|
|
|
@ -22,6 +22,34 @@ output~ to a code block will minimize that noise.
|
|
|
|
|
|
|
|
|
|
* Overview
|
|
|
|
|
|
|
|
|
|
This Python package provides utilities for extracting tabular data from PDF
|
|
|
|
|
files and images of tables.
|
|
|
|
|
|
|
|
|
|
Given an image that contains a table...
|
|
|
|
|
|
|
|
|
|
#+ATTR_HTML: :width 25%
|
|
|
|
|
[[file:resources/examples/example-page.png]]
|
|
|
|
|
|
|
|
|
|
Extract the the text into a CSV format...
|
|
|
|
|
|
|
|
|
|
#+BEGIN_EXAMPLE
|
|
|
|
|
PRIZE,ODDS 1 IN:,# OF WINNERS*
|
|
|
|
|
$3,9.09,"282,447"
|
|
|
|
|
$5,16.66,"154,097"
|
|
|
|
|
$7,40.01,"64,169"
|
|
|
|
|
$10,26.67,"96,283"
|
|
|
|
|
$20,100.00,"25,677"
|
|
|
|
|
$30,290.83,"8,829"
|
|
|
|
|
$50,239.66,"10,714"
|
|
|
|
|
$100,919.66,"2,792"
|
|
|
|
|
$500,"6,652.07",386
|
|
|
|
|
"$40,000","855,899.99",3
|
|
|
|
|
1,i223,
|
|
|
|
|
Toa,,
|
|
|
|
|
,,
|
|
|
|
|
,,"* Based upon 2,567,700"
|
|
|
|
|
#+END_EXAMPLE
|
|
|
|
|
|
|
|
|
|
** To get CSV data from a table in a scanned pdf document:
|
|
|
|
|
|
|
|
|
|
#+BEGIN_SRC shell :results none :session *Shell*
|
|
|
|
@ -367,7 +395,8 @@ header bar or something. If we know our cells are all within a certain size (by
|
|
|
|
|
area of pixels) then we can filter out the junk cells by removing cells
|
|
|
|
|
above/below certain sizes.
|
|
|
|
|
|
|
|
|
|
#+BEGIN_SRC python :noweb-ref bounding-rects :results none
|
|
|
|
|
#+NAME: bounding-rects
|
|
|
|
|
#+BEGIN_SRC python :results none
|
|
|
|
|
contours, heirarchy = cv2.findContours(
|
|
|
|
|
mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE,
|
|
|
|
|
)
|
|
|
|
@ -409,7 +438,8 @@ of the rectangles that have a center that is within the top-y and bottom-y
|
|
|
|
|
values of that top-left rectangle. Then we'll sort those rectangles by the x
|
|
|
|
|
value of their center. We'll remove those rectangles from the list and repeat.
|
|
|
|
|
|
|
|
|
|
#+BEGIN_SRC python :noweb-ref sort-contours :results none
|
|
|
|
|
#+NAME: sort-contours
|
|
|
|
|
#+BEGIN_SRC python :results none
|
|
|
|
|
def cell_in_same_row(c1, c2):
|
|
|
|
|
c1_center = c1[1] + c1[3] - c1[3] / 2
|
|
|
|
|
c2_bottom = c2[1] + c2[3]
|
|
|
|
@ -479,7 +509,8 @@ cv2.imwrite("resources/examples/example-table-cells-numbered.png", image)
|
|
|
|
|
#+ATTR_HTML: :width 500px :height 100%
|
|
|
|
|
[[file:resources/examples/example-table-cells-numbered.png]]
|
|
|
|
|
|
|
|
|
|
#+BEGIN_SRC python :noweb-ref extract-cells-from-table :noweb yes :eval no
|
|
|
|
|
#+NAME: extract-cells-from-table
|
|
|
|
|
#+BEGIN_SRC python :noweb yes :eval no
|
|
|
|
|
def extract_cell_images_from_table(image):
|
|
|
|
|
<<blur>>
|
|
|
|
|
<<threshold>>
|
|
|
|
@ -547,14 +578,16 @@ def crop_to_text(image):
|
|
|
|
|
# Get rid of little noise.
|
|
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
|
|
|
|
opened = cv2.morphologyEx(cleaned, cv2.MORPH_OPEN, kernel)
|
|
|
|
|
opened = cv2.dilate(opened, kernel)
|
|
|
|
|
|
|
|
|
|
contours, hierarchy = cv2.findContours(opened, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
|
bounding_rects = [cv2.boundingRect(c) for c in contours]
|
|
|
|
|
NUM_PX_COMMA = 6
|
|
|
|
|
MIN_CHAR_AREA = 5 * 9
|
|
|
|
|
if bounding_rects:
|
|
|
|
|
char_sized_bounding_rects = [(x, y, w, h) for x, y, w, h in bounding_rects if w * h > MIN_CHAR_AREA]
|
|
|
|
|
if char_sized_bounding_rects:
|
|
|
|
|
minx, miny, maxx, maxy = math.inf, math.inf, 0, 0
|
|
|
|
|
for x, y, w, h in [(x, y, w, h) for x, y, w, h in bounding_rects if w * h > MIN_CHAR_AREA]:
|
|
|
|
|
for x, y, w, h in char_sized_bounding_rects:
|
|
|
|
|
minx = min(minx, x)
|
|
|
|
|
miny = min(miny, y)
|
|
|
|
|
maxx = max(maxx, x + w)
|
|
|
|
@ -562,8 +595,8 @@ def crop_to_text(image):
|
|
|
|
|
x, y, w, h = minx, miny, maxx - minx, maxy - miny
|
|
|
|
|
cropped = image[y:min(img_h, y+h+NUM_PX_COMMA), x:min(img_w, x+w)]
|
|
|
|
|
else:
|
|
|
|
|
# If we morphed out all of the text, fallback to using the unmorphed image.
|
|
|
|
|
cropped = image
|
|
|
|
|
# If we morphed out all of the text, assume an empty image.
|
|
|
|
|
cropped = MAX_COLOR_VAL * np.ones(shape=(20, 100), dtype=np.uint8)
|
|
|
|
|
bordered = cv2.copyMakeBorder(cropped, 5, 5, 5, 5, cv2.BORDER_CONSTANT, None, 255)
|
|
|
|
|
return bordered
|
|
|
|
|
#+END_SRC
|
|
|
|
@ -571,6 +604,7 @@ def crop_to_text(image):
|
|
|
|
|
#+HEADER: :post html-image-size(text=*this*, width="200px")
|
|
|
|
|
#+BEGIN_SRC python :noweb no-export :results raw :exports both
|
|
|
|
|
import cv2
|
|
|
|
|
import numpy as np
|
|
|
|
|
<<crop-to-text>>
|
|
|
|
|
image = cv2.imread("resources/examples/example-table-cell-1-1.png", cv2.IMREAD_GRAYSCALE)
|
|
|
|
|
image = crop_to_text(image)
|
|
|
|
@ -606,6 +640,7 @@ def ocr_image(image, config):
|
|
|
|
|
#+BEGIN_SRC python :noweb no-export :exports both
|
|
|
|
|
import pytesseract
|
|
|
|
|
import cv2
|
|
|
|
|
import numpy as np
|
|
|
|
|
image = cv2.imread("resources/examples/example-table-cell-1-1.png", cv2.IMREAD_GRAYSCALE)
|
|
|
|
|
<<crop-to-text>>
|
|
|
|
|
<<ocr-image>>
|
|
|
|
@ -884,6 +919,8 @@ if __name__ == "__main__":
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pytesseract
|
|
|
|
|
|
|
|
|
|
<<crop-to-text>>
|
|
|
|
|
<<ocr-image>>
|
|
|
|
@ -902,7 +939,8 @@ import os
|
|
|
|
|
import sys
|
|
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
|
import pytesseract
|
|
|
|
|
|
|
|
|
|
from table_ocr.ocr_image import crop_to_text, ocr_image
|
|
|
|
|
|
|
|
|
|
description="""Takes a single argument that is the image to OCR.
|
|
|
|
|
Remaining arguments are passed directly to Tesseract.
|
|
|
|
@ -913,9 +951,6 @@ Filenames are of the format for training with tesstrain."""
|
|
|
|
|
parser = argparse.ArgumentParser(description=description)
|
|
|
|
|
parser.add_argument("image", help="filepath of image to perform OCR")
|
|
|
|
|
|
|
|
|
|
<<crop-to-text>>
|
|
|
|
|
<<ocr-image>>
|
|
|
|
|
|
|
|
|
|
def main(image_file, tess_args):
|
|
|
|
|
directory, filename = os.path.split(image_file)
|
|
|
|
|
filename_sans_ext, ext = os.path.splitext(filename)
|
|
|
|
|