Move main of extract_cells to __init__.py
Also make main return a value rather than print to stdout. It's more convenient for other code to use these modules when they return values rather than print.main
parent
962abb7a02
commit
6359b86e42
@ -1,120 +1,6 @@
|
|||||||
import os
|
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
import cv2
|
from table_ocr.extract_cells import main
|
||||||
|
|
||||||
from table_ocr.extract_cells import extract_cell_images_from_table
|
paths = main(sys.argv[1])
|
||||||
|
print("\n".join(paths))
|
||||||
def main(f):
|
|
||||||
results = []
|
|
||||||
directory, filename = os.path.split(f)
|
|
||||||
table = cv2.imread(f, cv2.IMREAD_GRAYSCALE)
|
|
||||||
rows = extract_cell_images_from_table(table)
|
|
||||||
cell_img_dir = os.path.join(directory, "cells")
|
|
||||||
os.makedirs(cell_img_dir, exist_ok=True)
|
|
||||||
for i, row in enumerate(rows):
|
|
||||||
for j, cell in enumerate(row):
|
|
||||||
cell_filename = "{:03d}-{:03d}.png".format(i, j)
|
|
||||||
path = os.path.join(cell_img_dir, cell_filename)
|
|
||||||
cv2.imwrite(path, cell)
|
|
||||||
print(path)
|
|
||||||
|
|
||||||
|
|
||||||
def extract_cell_images_from_table(image):
|
|
||||||
BLUR_KERNEL_SIZE = (17, 17)
|
|
||||||
STD_DEV_X_DIRECTION = 0
|
|
||||||
STD_DEV_Y_DIRECTION = 0
|
|
||||||
blurred = cv2.GaussianBlur(image, BLUR_KERNEL_SIZE, STD_DEV_X_DIRECTION, STD_DEV_Y_DIRECTION)
|
|
||||||
MAX_COLOR_VAL = 255
|
|
||||||
BLOCK_SIZE = 15
|
|
||||||
SUBTRACT_FROM_MEAN = -2
|
|
||||||
|
|
||||||
img_bin = cv2.adaptiveThreshold(
|
|
||||||
~blurred,
|
|
||||||
MAX_COLOR_VAL,
|
|
||||||
cv2.ADAPTIVE_THRESH_MEAN_C,
|
|
||||||
cv2.THRESH_BINARY,
|
|
||||||
BLOCK_SIZE,
|
|
||||||
SUBTRACT_FROM_MEAN,
|
|
||||||
)
|
|
||||||
vertical = horizontal = img_bin.copy()
|
|
||||||
SCALE = 5
|
|
||||||
image_width, image_height = horizontal.shape
|
|
||||||
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / SCALE), 1))
|
|
||||||
horizontally_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
|
|
||||||
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / SCALE)))
|
|
||||||
vertically_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)
|
|
||||||
|
|
||||||
horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1)))
|
|
||||||
vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60)))
|
|
||||||
|
|
||||||
mask = horizontally_dilated + vertically_dilated
|
|
||||||
contours, heirarchy = cv2.findContours(
|
|
||||||
mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE,
|
|
||||||
)
|
|
||||||
|
|
||||||
perimeter_lengths = [cv2.arcLength(c, True) for c in contours]
|
|
||||||
epsilons = [0.05 * p for p in perimeter_lengths]
|
|
||||||
approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)]
|
|
||||||
|
|
||||||
# Filter out contours that aren't rectangular. Those that aren't rectangular
|
|
||||||
# are probably noise.
|
|
||||||
approx_rects = [p for p in approx_polys if len(p) == 4]
|
|
||||||
bounding_rects = [cv2.boundingRect(a) for a in approx_polys]
|
|
||||||
|
|
||||||
# Filter out rectangles that are too narrow or too short.
|
|
||||||
MIN_RECT_WIDTH = 40
|
|
||||||
MIN_RECT_HEIGHT = 10
|
|
||||||
bounding_rects = [
|
|
||||||
r for r in bounding_rects if MIN_RECT_WIDTH < r[2] and MIN_RECT_HEIGHT < r[3]
|
|
||||||
]
|
|
||||||
|
|
||||||
# The largest bounding rectangle is assumed to be the entire table.
|
|
||||||
# Remove it from the list. We don't want to accidentally try to OCR
|
|
||||||
# the entire table.
|
|
||||||
largest_rect = max(bounding_rects, key=lambda r: r[2] * r[3])
|
|
||||||
bounding_rects = [b for b in bounding_rects if b is not largest_rect]
|
|
||||||
|
|
||||||
cells = [c for c in bounding_rects]
|
|
||||||
def cell_in_same_row(c1, c2):
|
|
||||||
c1_center = c1[1] + c1[3] - c1[3] / 2
|
|
||||||
c2_bottom = c2[1] + c2[3]
|
|
||||||
c2_top = c2[1]
|
|
||||||
return c2_top < c1_center < c2_bottom
|
|
||||||
|
|
||||||
orig_cells = [c for c in cells]
|
|
||||||
rows = []
|
|
||||||
while cells:
|
|
||||||
first = cells[0]
|
|
||||||
rest = cells[1:]
|
|
||||||
cells_in_same_row = sorted(
|
|
||||||
[
|
|
||||||
c for c in rest
|
|
||||||
if cell_in_same_row(c, first)
|
|
||||||
],
|
|
||||||
key=lambda c: c[0]
|
|
||||||
)
|
|
||||||
|
|
||||||
row_cells = sorted([first] + cells_in_same_row, key=lambda c: c[0])
|
|
||||||
rows.append(row_cells)
|
|
||||||
cells = [
|
|
||||||
c for c in rest
|
|
||||||
if not cell_in_same_row(c, first)
|
|
||||||
]
|
|
||||||
|
|
||||||
# Sort rows by average height of their center.
|
|
||||||
def avg_height_of_center(row):
|
|
||||||
centers = [y + h - h / 2 for x, y, w, h in row]
|
|
||||||
return sum(centers) / len(centers)
|
|
||||||
|
|
||||||
rows.sort(key=avg_height_of_center)
|
|
||||||
cell_images_rows = []
|
|
||||||
for row in rows:
|
|
||||||
cell_images_row = []
|
|
||||||
for x, y, w, h in row:
|
|
||||||
cell_images_row.append(image[y:y+h, x:x+w])
|
|
||||||
cell_images_rows.append(cell_images_row)
|
|
||||||
return cell_images_rows
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main(sys.argv[1])
|
|
||||||
|
Loading…
Reference in New Issue