Initial commit
@ -0,0 +1,21 @@
|
|||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) [year] [fullname]
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
@ -0,0 +1,775 @@
|
|||||||
|
# -*- org-image-actual-width: 500; -*-
|
||||||
|
|
||||||
|
#+TITLE: PDF Parsing
|
||||||
|
#+PROPERTY: header-args :session *Python*
|
||||||
|
#+STARTUP: inlineimages
|
||||||
|
#+OPTIONS: ^:nil
|
||||||
|
|
||||||
|
#+BEGIN_COMMENT
|
||||||
|
Some notes about the header for those not familiar with Org Mode:
|
||||||
|
|
||||||
|
The property `header-args` with ~:session \*Python\*~ will cause all evaluated
|
||||||
|
source code blocks to be evaluated in the buffer named "\*Python\*", which is the
|
||||||
|
default buffer name for the buffer connected to an inferior python process. This
|
||||||
|
is useful for interactive development. It gives you a REPL to work with rather
|
||||||
|
than having to constantly evaluate source code blocks and view the results
|
||||||
|
output to try any change.
|
||||||
|
|
||||||
|
Another note along those lines is that when source code blocks are evaluated,
|
||||||
|
some unnecessary output is printed in the ~*Python*~ buffer. Adding ~:results
|
||||||
|
output~ to a code block will minimize that noise.
|
||||||
|
#+END_COMMENT
|
||||||
|
|
||||||
|
* Preparing our data
|
||||||
|
** Converting PDFs to images
|
||||||
|
|
||||||
|
Not all pdfs need to be sent through OCR to extract the text content. If you can
|
||||||
|
click and drag to highlight text in the pdf, then the tools in this library
|
||||||
|
probably aren't necessary.
|
||||||
|
|
||||||
|
This code calls out to [[https://manpages.debian.org/testing/poppler-utils/pdfimages.1.en.html][pdfimages]] from [[https://poppler.freedesktop.org/][Poppler]].
|
||||||
|
|
||||||
|
#+NAME: pdf-to-images
|
||||||
|
#+BEGIN_SRC python :results none
|
||||||
|
def pdf_to_images(pdf_filepath):
|
||||||
|
"""
|
||||||
|
Turn a pdf into images
|
||||||
|
"""
|
||||||
|
directory, filename = os.path.split(pdf_filepath)
|
||||||
|
with working_dir(directory):
|
||||||
|
image_filenames = pdfimages(pdf_filepath)
|
||||||
|
|
||||||
|
# Since pdfimages creates a number of files named each for there page number
|
||||||
|
# and doesn't return us the list that it created
|
||||||
|
return [os.path.join(directory, f) for f in image_filenames]
|
||||||
|
|
||||||
|
|
||||||
|
def pdfimages(pdf_filepath):
|
||||||
|
"""
|
||||||
|
Uses the `pdfimages` utility from Poppler
|
||||||
|
(https://poppler.freedesktop.org/). Creates images out of each page. Images
|
||||||
|
are prefixed by their name sans extension and suffixed by their page number.
|
||||||
|
"""
|
||||||
|
directory, filename = os.path.split(pdf_filepath)
|
||||||
|
filename_sans_ext = filename.split(".pdf")[0]
|
||||||
|
subprocess.run(["pdfimages", "-png", pdf_filepath, filename.split(".pdf")[0]])
|
||||||
|
image_filenames = find_matching_files_in_dir(filename_sans_ext, directory)
|
||||||
|
logger.debug("Converted {} into files:\n{}".format(pdf_filepath, "\n".join(image_filenames)))
|
||||||
|
return image_filenames
|
||||||
|
|
||||||
|
|
||||||
|
def find_matching_files_in_dir(file_prefix, directory):
|
||||||
|
files = [
|
||||||
|
filename
|
||||||
|
for filename in os.listdir(directory)
|
||||||
|
if re.match(r"{}.*\.png".format(re.escape(file_prefix)), filename)
|
||||||
|
]
|
||||||
|
return files
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
** Detecting image orientation and applying rotation.
|
||||||
|
|
||||||
|
Tesseract can detect orientation and we can then use [[https://www.imagemagick.org/script/mogrify.php][ImageMagick's mogrify]] to
|
||||||
|
rotate the image.
|
||||||
|
|
||||||
|
Here's an example of the output we get from orientation detection with
|
||||||
|
Tesseract.
|
||||||
|
|
||||||
|
#+BEGIN_EXAMPLE
|
||||||
|
➜ example/ tesseract --psm 0 example-000.png -
|
||||||
|
Page number: 0
|
||||||
|
Orientation in degrees: 90
|
||||||
|
Rotate: 270
|
||||||
|
Orientation confidence: 26.86
|
||||||
|
Script: Latin
|
||||||
|
Script confidence: 2.44
|
||||||
|
#+END_EXAMPLE
|
||||||
|
|
||||||
|
#+NAME: fix-orientation
|
||||||
|
#+BEGIN_SRC python :results none
|
||||||
|
def preprocess_img(filepath):
|
||||||
|
"""
|
||||||
|
Processing that involves running shell executables,
|
||||||
|
like mogrify to rotate.
|
||||||
|
"""
|
||||||
|
rotate = get_rotate(filepath)
|
||||||
|
logger.debug("Rotating {} by {}.".format(filepath, rotate))
|
||||||
|
mogrify(filepath, rotate)
|
||||||
|
|
||||||
|
|
||||||
|
def get_rotate(image_filepath):
|
||||||
|
output = (
|
||||||
|
subprocess.check_output(["tesseract", "--psm", "0", image_filepath, "-"])
|
||||||
|
.decode("utf-8")
|
||||||
|
.split("\n")
|
||||||
|
)
|
||||||
|
output = next(l for l in output if "Rotate: " in l)
|
||||||
|
output = output.split(": ")[1]
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def mogrify(image_filepath, rotate):
|
||||||
|
subprocess.run(["mogrify", "-rotate", rotate, image_filepath])
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
* Detecting tables
|
||||||
|
|
||||||
|
This answer from opencv.org was heavily referenced while writing the code around
|
||||||
|
table detection:
|
||||||
|
https://answers.opencv.org/question/63847/how-to-extract-tables-from-an-image/.
|
||||||
|
|
||||||
|
It's much easier to OCR a table when the table is the only thing in the image.
|
||||||
|
This code detects tables in an image and returns a list of images of just the
|
||||||
|
tables, no surrounding text or noise.
|
||||||
|
|
||||||
|
The blurring, thresholding, and line detection is used here as well as later on
|
||||||
|
for cell extraction. They are good techniques for cleaning an image up in a way
|
||||||
|
that makes things like shape detection more accurate.
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :noweb-ref detect-table :results none :noweb no-export
|
||||||
|
def find_tables(image):
|
||||||
|
<<blur>>
|
||||||
|
<<threshold>>
|
||||||
|
<<lines-of-table>>
|
||||||
|
contours, heirarchy = cv2.findContours(
|
||||||
|
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE,
|
||||||
|
)
|
||||||
|
|
||||||
|
MIN_TABLE_AREA = 1e5
|
||||||
|
contours = [c for c in contours if cv2.contourArea(c) > MIN_TABLE_AREA]
|
||||||
|
perimeter_lengths = [cv2.arcLength(c, True) for c in contours]
|
||||||
|
epsilons = [0.1 * p for p in perimeter_lengths]
|
||||||
|
approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)]
|
||||||
|
bounding_rects = [cv2.boundingRect(a) for a in approx_polys]
|
||||||
|
|
||||||
|
# The link where a lot of this code was borrowed from recommends an
|
||||||
|
# additional step to check the number of "joints" inside this bounding rectangle.
|
||||||
|
# A table should have a lot of intersections. We might have a rectangular image
|
||||||
|
# here though which would only have 4 intersections, 1 at each corner.
|
||||||
|
# Leaving that step as a future TODO if it is ever necessary.
|
||||||
|
images = [image[y:y+h, x:x+w] for x, y, w, h in bounding_rects]
|
||||||
|
return images
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+HEADER: :post html-image-size(text=*this*, width="500px")
|
||||||
|
#+BEGIN_SRC python :noweb-ref test-detect-table :noweb no-export :results raw
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
<<detect-table>>
|
||||||
|
|
||||||
|
image_filename = "resources/examples/example-page.png"
|
||||||
|
image = cv2.imread(image_filename, cv2.IMREAD_GRAYSCALE)
|
||||||
|
image = find_tables(image)[0]
|
||||||
|
cv2.imwrite("resources/examples/example-table.png", image)
|
||||||
|
"resources/examples/example-table.png"
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
* OCR tables
|
||||||
|
|
||||||
|
Find the bounding box of each cell in the table. Run tesseract on each cell.
|
||||||
|
Print a comma seperated output.
|
||||||
|
|
||||||
|
We'll start with an image shown at the end of the previous section.
|
||||||
|
|
||||||
|
*** Blur
|
||||||
|
|
||||||
|
Blurring helps to make noise less noisy so that the overall structure of an
|
||||||
|
image is more detectable.
|
||||||
|
|
||||||
|
That gray row at the bottom is kind of noisy. If we don't somehow clean it up,
|
||||||
|
OpenCV will detect all sorts of odd shapes in there and it will throw off our
|
||||||
|
cell detection.
|
||||||
|
|
||||||
|
Cleanup can be accomplished with a blur followed by some thresholding.
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :noweb-ref blur :results none
|
||||||
|
BLUR_KERNEL_SIZE = (17, 17)
|
||||||
|
STD_DEV_X_DIRECTION = 0
|
||||||
|
STD_DEV_Y_DIRECTION = 0
|
||||||
|
blurred = cv2.GaussianBlur(image, BLUR_KERNEL_SIZE, STD_DEV_X_DIRECTION, STD_DEV_Y_DIRECTION)
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+HEADER: :post html-image-size(text=*this*, width="500px")
|
||||||
|
#+BEGIN_SRC python :noweb no-export :results raw :exports both
|
||||||
|
image = ~cv2.imread("resources/examples/example-table.png", cv2.IMREAD_GRAYSCALE)
|
||||||
|
<<blur>>
|
||||||
|
cv2.imwrite("resources/examples/example-table-blurred.png", blurred)
|
||||||
|
"resources/examples/example-table-blurred.png"
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
#+ATTR_HTML: :width 500px :height 100%
|
||||||
|
[[file:resources/examples/example-table-blurred.png]]
|
||||||
|
|
||||||
|
*** Threshold
|
||||||
|
|
||||||
|
We've got a bunch of pixels that are gray. Thresholding will turn them all
|
||||||
|
either black or white. Having all black or white pixels lets us do morphological
|
||||||
|
transformations like erosion and dilation.
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :noweb-ref threshold :results none
|
||||||
|
MAX_COLOR_VAL = 255
|
||||||
|
BLOCK_SIZE = 15
|
||||||
|
SUBTRACT_FROM_MEAN = -2
|
||||||
|
|
||||||
|
img_bin = cv2.adaptiveThreshold(
|
||||||
|
~blurred,
|
||||||
|
MAX_COLOR_VAL,
|
||||||
|
cv2.ADAPTIVE_THRESH_MEAN_C,
|
||||||
|
cv2.THRESH_BINARY,
|
||||||
|
BLOCK_SIZE,
|
||||||
|
SUBTRACT_FROM_MEAN,
|
||||||
|
)
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+HEADER: :post html-image-size(text=*this*, width="500px")
|
||||||
|
#+BEGIN_SRC python :noweb no-export :results raw :exports both
|
||||||
|
<<threshold>>
|
||||||
|
cv2.imwrite("resources/examples/example-table-thresholded.png", img_bin)
|
||||||
|
"resources/examples/example-table-thresholded.png"
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
#+ATTR_HTML: :width 500px :height 100%
|
||||||
|
[[file:resources/examples/example-table-thresholded.png]]
|
||||||
|
|
||||||
|
*** Finding the vertical and horizontal lines of the table
|
||||||
|
|
||||||
|
Note: There's a wierd issue with the results of the example below when it's
|
||||||
|
evaluated as part of an export or a full-buffer evaluation. If you evaluate the
|
||||||
|
example by itself, it looks the way it's intended. If you evaluate it as part of
|
||||||
|
an entire buffer evaluation, it's distorted.
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :noweb-ref lines-of-table :results none
|
||||||
|
vertical = horizontal = img_bin.copy()
|
||||||
|
SCALE = 5
|
||||||
|
image_width, image_height = horizontal.shape
|
||||||
|
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / SCALE), 1))
|
||||||
|
horizontally_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel)
|
||||||
|
vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / SCALE)))
|
||||||
|
vertically_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel)
|
||||||
|
|
||||||
|
horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1)))
|
||||||
|
vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60)))
|
||||||
|
|
||||||
|
mask = horizontally_dilated + vertically_dilated
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+HEADER: :post html-image-size(text=*this*, width="500px")
|
||||||
|
#+BEGIN_SRC python :noweb no-export :results raw :exports both
|
||||||
|
<<lines-of-table>>
|
||||||
|
cv2.imwrite("resources/examples/example-table-lines.png", mask)
|
||||||
|
"resources/examples/example-table-lines.png"
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
#+ATTR_HTML: :width 500px :height 100%
|
||||||
|
[[file:resources/examples/example-table-lines.png]]
|
||||||
|
|
||||||
|
*** Finding the contours
|
||||||
|
|
||||||
|
Blurring and thresholding allow us to find the lines. Opening the lines allows
|
||||||
|
us to find the contours.
|
||||||
|
|
||||||
|
An "Opening" is an erosion followed by a dilation. Great examples and
|
||||||
|
descriptions of each morphological operation can be found at
|
||||||
|
[[https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html][https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html]].
|
||||||
|
|
||||||
|
#+BEGIN_QUOTE
|
||||||
|
Contours can be explained simply as a curve joining all the continuous points
|
||||||
|
(along the boundary), having same color or intensity. The contours are a useful
|
||||||
|
tool for shape analysis and object detection and recognition.
|
||||||
|
#+END_QUOTE
|
||||||
|
|
||||||
|
We can search those contours to find rectangles of certain size.
|
||||||
|
|
||||||
|
To do that, we can use OpenCV's ~approxPolyEP~ function. It takes as arguments
|
||||||
|
the contour (list of contiguous points), and a number representing how different
|
||||||
|
the polygon perimeter length can be from the true perimeter length of the
|
||||||
|
contour. ~0.1~ (10%) seems to be a good value. The difference in perimeter
|
||||||
|
length between a 4-sided polygon and a 3-sided polygon is greater than 10% and
|
||||||
|
the difference between a 5+ sided polygon and a 4-sided polygon is less than
|
||||||
|
10%. So a 4-sided polygon is the polygon with the fewest sides that leaves the
|
||||||
|
difference in perimeter length within our 10% threshold.
|
||||||
|
|
||||||
|
Then we just get the bounding rectangle of that polygon and we have our cells!
|
||||||
|
|
||||||
|
We might need to do a little more filtering of those rectangles though. We might
|
||||||
|
have accidentally found some noise such as another image on the page or a title
|
||||||
|
header bar or something. If we know our cells are all within a certain size (by
|
||||||
|
area of pixels) then we can filter out the junk cells by removing cells
|
||||||
|
above/below certain sizes.
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :noweb-ref bounding-rects :results none
|
||||||
|
contours, heirarchy = cv2.findContours(
|
||||||
|
mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE,
|
||||||
|
)
|
||||||
|
|
||||||
|
perimeter_lengths = [cv2.arcLength(c, True) for c in contours]
|
||||||
|
epsilons = [0.05 * p for p in perimeter_lengths]
|
||||||
|
approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)]
|
||||||
|
|
||||||
|
# Filter out contours that aren't rectangular. Those that aren't rectangular
|
||||||
|
# are probably noise.
|
||||||
|
approx_rects = [p for p in approx_polys if len(p) == 4]
|
||||||
|
bounding_rects = [cv2.boundingRect(a) for a in approx_polys]
|
||||||
|
|
||||||
|
# Filter out rectangles that are too narrow or too short.
|
||||||
|
MIN_RECT_WIDTH = 40
|
||||||
|
MIN_RECT_HEIGHT = 10
|
||||||
|
bounding_rects = [
|
||||||
|
r for r in bounding_rects if MIN_RECT_WIDTH < r[2] and MIN_RECT_HEIGHT < r[3]
|
||||||
|
]
|
||||||
|
|
||||||
|
# The largest bounding rectangle is assumed to be the entire table.
|
||||||
|
# Remove it from the list. We don't want to accidentally try to OCR
|
||||||
|
# the entire table.
|
||||||
|
largest_rect = max(bounding_rects, key=lambda r: r[2] * r[3])
|
||||||
|
bounding_rects = [b for b in bounding_rects if b is not largest_rect]
|
||||||
|
|
||||||
|
cells = [c for c in bounding_rects]
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
*** Sorting the bounding rectangles
|
||||||
|
|
||||||
|
We want to process these from left-to-right, top-to-bottom.
|
||||||
|
|
||||||
|
I've thought of a straightforward algorithm for it, but it could probably be
|
||||||
|
made more efficient.
|
||||||
|
|
||||||
|
We'll find the most rectangle with the most top-left corner. Then we'll find all
|
||||||
|
of the rectangles that have a center that is within the top-y and bottom-y
|
||||||
|
values of that top-left rectangle. Then we'll sort those rectangles by the x
|
||||||
|
value of their center. We'll remove those rectangles from the list and repeat.
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :noweb-ref sort-contours :results none
|
||||||
|
def cell_in_same_row(c1, c2):
|
||||||
|
c1_center = c1[1] + c1[3] - c1[3] / 2
|
||||||
|
c2_bottom = c2[1] + c2[3]
|
||||||
|
c2_top = c2[1]
|
||||||
|
return c2_top < c1_center < c2_bottom
|
||||||
|
|
||||||
|
orig_cells = [c for c in cells]
|
||||||
|
rows = []
|
||||||
|
while cells:
|
||||||
|
first = cells[0]
|
||||||
|
rest = cells[1:]
|
||||||
|
cells_in_same_row = sorted(
|
||||||
|
[
|
||||||
|
c for c in rest
|
||||||
|
if cell_in_same_row(c, first)
|
||||||
|
],
|
||||||
|
key=lambda c: c[0]
|
||||||
|
)
|
||||||
|
|
||||||
|
row_cells = sorted([first] + cells_in_same_row, key=lambda c: c[0])
|
||||||
|
rows.append(row_cells)
|
||||||
|
cells = [
|
||||||
|
c for c in rest
|
||||||
|
if not cell_in_same_row(c, first)
|
||||||
|
]
|
||||||
|
|
||||||
|
# Sort rows by average height of their center.
|
||||||
|
def avg_height_of_center(row):
|
||||||
|
centers = [y + h - h / 2 for x, y, w, h in row]
|
||||||
|
return sum(centers) / len(centers)
|
||||||
|
|
||||||
|
rows.sort(key=avg_height_of_center)
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
To test if this code works, let's try sorting the bounding rectangles and
|
||||||
|
numbering them from right to left, top to bottom.
|
||||||
|
|
||||||
|
#+HEADER: :post html-image-size(text=*this*, width="500px")
|
||||||
|
#+BEGIN_SRC python :noweb no-export :results raw :exports both
|
||||||
|
import cv2
|
||||||
|
image = cv2.imread("resources/examples/example-table.png", cv2.IMREAD_GRAYSCALE)
|
||||||
|
<<blur>>
|
||||||
|
<<threshold>>
|
||||||
|
<<lines-of-table>>
|
||||||
|
<<bounding-rects>>
|
||||||
|
<<sort-contours>>
|
||||||
|
|
||||||
|
FONT_SCALE = 0.7
|
||||||
|
FONT_COLOR = (127, 127, 127)
|
||||||
|
for i, row in enumerate(rows):
|
||||||
|
for j, cell in enumerate(row):
|
||||||
|
x, y, w, h = cell
|
||||||
|
cv2.putText(
|
||||||
|
image,
|
||||||
|
"{},{}".format(i, j),
|
||||||
|
(int(x + w - w / 2), int(y + h - h / 2)),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX,
|
||||||
|
FONT_SCALE,
|
||||||
|
FONT_COLOR,
|
||||||
|
2,
|
||||||
|
)
|
||||||
|
cv2.imwrite("resources/examples/example-table-cells-numbered.png", image)
|
||||||
|
"resources/examples/example-table-cells-numbered.png"
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
#+ATTR_HTML: :width 500px :height 100%
|
||||||
|
[[file:resources/examples/example-table-cells-numbered.png]]
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :noweb-ref extract-cells-from-table :noweb yes :eval no
|
||||||
|
def extract_cell_images_from_table(image):
|
||||||
|
<<blur>>
|
||||||
|
<<threshold>>
|
||||||
|
<<lines-of-table>>
|
||||||
|
<<bounding-rects>>
|
||||||
|
<<sort-contours>>
|
||||||
|
cell_images_rows = []
|
||||||
|
for row in rows:
|
||||||
|
cell_images_row = []
|
||||||
|
for x, y, w, h in row:
|
||||||
|
cell_images_row.append(image[y:y+h, x:x+w])
|
||||||
|
cell_images_rows.append(cell_images_row)
|
||||||
|
return cell_images_rows
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+HEADER: :post html-image-size(text=*this*, width="200px")
|
||||||
|
#+BEGIN_SRC python :noweb no-export :results raw :exports both
|
||||||
|
<<extract-cells-from-table>>
|
||||||
|
image = cv2.imread("resources/examples/example-table.png", cv2.IMREAD_GRAYSCALE)
|
||||||
|
cell_images_rows = extract_cell_images_from_table(image)
|
||||||
|
cv2.imwrite("resources/examples/example-table-cell-1-1.png", cell_images_rows[1][1])
|
||||||
|
"resources/examples/example-table-cell-1-1.png"
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
*** Cropping each cell to the text
|
||||||
|
|
||||||
|
OCR with Tesseract works best when there is about 10 pixels of white border
|
||||||
|
around the text.
|
||||||
|
|
||||||
|
Our bounding rectangles may have picked up some stray pixels from the horizontal
|
||||||
|
and vertical lines of the cells in the table. It's probobly just a few pixels,
|
||||||
|
much fewer than the width of the text. If that's the case, then we can remove
|
||||||
|
that noise with a simple open morph.
|
||||||
|
|
||||||
|
Once the stray border pixels have been removed, we can expand our border using
|
||||||
|
~openMakeBorder~.
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :eval no :noweb-ref crop-to-text
|
||||||
|
def crop_to_text(image):
|
||||||
|
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (4, 4))
|
||||||
|
opened = cv2.morphologyEx(~image, cv2.MORPH_OPEN, kernel)
|
||||||
|
|
||||||
|
contours, hierarchy = cv2.findContours(opened, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
bounding_rects = [cv2.boundingRect(c) for c in contours]
|
||||||
|
# The largest contour is certainly the text that we're looking for.
|
||||||
|
largest_rect = max(bounding_rects, key=lambda r: r[2] * r[3])
|
||||||
|
x, y, w, h = largest_rect
|
||||||
|
cropped = image[y:y+h, x:x+w]
|
||||||
|
bordered = cv2.copyMakeBorder(cropped, 5, 5, 5, 5, cv2.BORDER_CONSTANT, None, 255)
|
||||||
|
return bordered
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+HEADER: :post html-image-size(text=*this*, width="200px")
|
||||||
|
#+BEGIN_SRC python :noweb no-export :results raw :exports both
|
||||||
|
import cv2
|
||||||
|
<<crop-to-text>>
|
||||||
|
image = cv2.imread("resources/examples/example-table-cell-1-1.png", cv2.IMREAD_GRAYSCALE)
|
||||||
|
image = crop_to_text(image)
|
||||||
|
cv2.imwrite("resources/examples/example-table-cell-1-1-cropped.png", image)
|
||||||
|
"resources/examples/example-table-cell-1-1-cropped.png"
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
#+ATTR_HTML: :width 200px :height 100%
|
||||||
|
[[file:resources/examples/example-table-cell-1-1-cropped.png]]
|
||||||
|
|
||||||
|
*** OCR each cell
|
||||||
|
|
||||||
|
If we cleaned up the images well enough, we might get some accurate OCR!
|
||||||
|
|
||||||
|
There is plenty that could have gone wrong along the way.
|
||||||
|
|
||||||
|
The first step to troubleshooting is to view the intermediate images and see if
|
||||||
|
there's something about your image that is obviously abnormal, like some really
|
||||||
|
thick noise or a wrongly detected table.
|
||||||
|
|
||||||
|
If everything looks reasonable but the OCR is doing something like turning a
|
||||||
|
period into a comma, then you might need to do some custom Tesseract training.
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :noweb-ref ocr-image :eval no :noweb yes
|
||||||
|
<<crop-to-text>>
|
||||||
|
|
||||||
|
def ocr_image(image, config):
|
||||||
|
cropped = crop_to_text(image)
|
||||||
|
return pytesseract.image_to_string(
|
||||||
|
~cropped,
|
||||||
|
config=config
|
||||||
|
)
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :noweb no-export :exports both
|
||||||
|
import pytesseract
|
||||||
|
image = cv2.imread("resources/examples/example-table-cell-1-1.png", cv2.IMREAD_GRAYSCALE)
|
||||||
|
<<ocr-image>>
|
||||||
|
ocr_image(image, "--psm 7")
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
: 9.09
|
||||||
|
|
||||||
|
* Files
|
||||||
|
:PROPERTIES:
|
||||||
|
:header-args: :mkdirp yes :noweb yes
|
||||||
|
:END:
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :tangle pdf/__init__.py :mkdirp yes :results none
|
||||||
|
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
|
||||||
|
** setup.py
|
||||||
|
#+BEGIN_SRC python :tangle setup.py :results none
|
||||||
|
import setuptools
|
||||||
|
|
||||||
|
with open("README.md", "r") as fh:
|
||||||
|
long_description = fh.read()
|
||||||
|
|
||||||
|
setuptools.setup(
|
||||||
|
name="example-pkg-YOUR-USERNAME-HERE", # Replace with your own username
|
||||||
|
version="0.0.1",
|
||||||
|
author="Example Author",
|
||||||
|
author_email="author@example.com",
|
||||||
|
description="A small example package",
|
||||||
|
long_description=long_description,
|
||||||
|
long_description_content_type="text/markdown",
|
||||||
|
url="https://github.com/pypa/sampleproject",
|
||||||
|
packages=setuptools.find_packages(),
|
||||||
|
classifiers=[
|
||||||
|
"Programming Language :: Python :: 3",
|
||||||
|
"License :: OSI Approved :: MIT License",
|
||||||
|
"Operating System :: OS Independent",
|
||||||
|
],
|
||||||
|
python_requires='>=3.6',
|
||||||
|
)
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
** table_image_ocr
|
||||||
|
*** table_image_ocr/__init__.py
|
||||||
|
#+BEGIN_SRC python :tangle table_image_ocr/__init__.py :mkdirp yes :results none
|
||||||
|
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
*** table_image_ocr/util.py
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :tangle table_image_ocr/util.py :mkdirp yes :results none
|
||||||
|
from contextlib import contextmanager
|
||||||
|
import functools
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
from bs4 import BeautifulSoup as bs
|
||||||
|
import requests
|
||||||
|
|
||||||
|
|
||||||
|
<<get_logger>>
|
||||||
|
|
||||||
|
logger = get_logger()
|
||||||
|
|
||||||
|
|
||||||
|
<<request_cacheing>>
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def working_dir(directory):
|
||||||
|
original_working_dir = os.getcwd()
|
||||||
|
try:
|
||||||
|
os.chdir(directory)
|
||||||
|
yield directory
|
||||||
|
finally:
|
||||||
|
os.chdir(original_working_dir)
|
||||||
|
|
||||||
|
|
||||||
|
def download(url, filepath):
|
||||||
|
response = request_get(url)
|
||||||
|
data = response.content
|
||||||
|
with open(filepath, "wb") as f:
|
||||||
|
f.write(data)
|
||||||
|
|
||||||
|
|
||||||
|
def make_tempdir(identifier):
|
||||||
|
return tempfile.mkdtemp(prefix="{}_".format(identifier))
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
*** table_image_ocr/prepare_pdfs.py
|
||||||
|
|
||||||
|
Takes a variable number of pdf files and creates images out of each page of the
|
||||||
|
file using ~pdfimages~ from Poppler. Images are created in the same directory
|
||||||
|
that contains the pdf.
|
||||||
|
|
||||||
|
Prints each pdf followed by the images extracted from that pdf followed by a
|
||||||
|
blank line.
|
||||||
|
|
||||||
|
#+BEGIN_SRC shell :eval no :exports code
|
||||||
|
python -m pdf.prepare_pdfs /tmp/file1/file1.pdf /tmp/file2/file2.pdf ...
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :tangle pdf/prepare_pdfs.py :noweb yes
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
|
||||||
|
from pdf.util import request_get, working_dir, download, make_tempdir
|
||||||
|
|
||||||
|
|
||||||
|
<<get-logger>>
|
||||||
|
|
||||||
|
logger = get_logger()
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("files", nargs="+")
|
||||||
|
|
||||||
|
def main(files):
|
||||||
|
pdf_images = []
|
||||||
|
for f in files:
|
||||||
|
pdf_images.append((f, pdf_to_images(f)))
|
||||||
|
|
||||||
|
for pdf, images in pdf_images:
|
||||||
|
for image in images:
|
||||||
|
preprocess_img(image)
|
||||||
|
|
||||||
|
for pdf, images in pdf_images:
|
||||||
|
print("{}\n{}\n".format(pdf, "\n".join(images)))
|
||||||
|
|
||||||
|
|
||||||
|
<<pdf-to-images>>
|
||||||
|
<<fix-orientation>>
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
args = parser.parse_args()
|
||||||
|
main(args.files)
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
|
||||||
|
*** table_image_ocr/extract_tables.py
|
||||||
|
|
||||||
|
#+BEGIN_SRC shell
|
||||||
|
. ~/.virtualenvs/lotto_odds/bin/activate
|
||||||
|
python -m pdf.extract_tables "resources/examples/example-page.png"
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
| resources/examples/example-page.png |
|
||||||
|
| resources/examples/example-page-table-000.png |
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :noweb yes :tangle pdf/extract_tables.py :results none
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("files", nargs="+")
|
||||||
|
|
||||||
|
|
||||||
|
def main(files):
|
||||||
|
results = []
|
||||||
|
for f in files:
|
||||||
|
directory, filename = os.path.split(f)
|
||||||
|
image = cv2.imread(f, cv2.IMREAD_GRAYSCALE)
|
||||||
|
tables = find_tables(image)
|
||||||
|
files = []
|
||||||
|
for i, table in enumerate(tables):
|
||||||
|
filename_sans_extension = os.path.splitext(filename)[0]
|
||||||
|
table_filename = "{}-table-{:03d}.png".format(filename_sans_extension, i)
|
||||||
|
table_filepath = os.path.join(directory, table_filename)
|
||||||
|
files.append(table_filepath)
|
||||||
|
cv2.imwrite(table_filepath, table)
|
||||||
|
results.append((f, files))
|
||||||
|
|
||||||
|
for image_filename, table_filenames in results:
|
||||||
|
print("{}\n{}\n".format(image_filename, "\n".join(table_filenames)))
|
||||||
|
|
||||||
|
<<detect-table>>
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
args = parser.parse_args()
|
||||||
|
files = args.files
|
||||||
|
main(files)
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
*** table_image_ocr/extract_cells_from_table.py
|
||||||
|
|
||||||
|
#+BEGIN_SRC shell :results none
|
||||||
|
. ~/.virtualenvs/lotto_odds/bin/activate
|
||||||
|
python -m pdf.extract_cells_from_table "resources/examples/example-table.png"
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+BEGIN_SRC python :noweb yes :tangle pdf/extract_cells_from_table.py :results none
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import pytesseract
|
||||||
|
|
||||||
|
def main(f):
|
||||||
|
results = []
|
||||||
|
directory, filename = os.path.split(f)
|
||||||
|
table = cv2.imread(f, cv2.IMREAD_GRAYSCALE)
|
||||||
|
rows = extract_cell_images_from_table(table)
|
||||||
|
cell_img_dir = os.path.join(directory, "cells")
|
||||||
|
os.makedirs(cell_img_dir, exist_ok=True)
|
||||||
|
for i, row in enumerate(rows):
|
||||||
|
for j, cell in enumerate(row):
|
||||||
|
cell_filename = "{:03d}-{:03d}.png".format(i, j)
|
||||||
|
path = os.path.join(cell_img_dir, cell_filename)
|
||||||
|
cv2.imwrite(path, cell)
|
||||||
|
print(cell_filename)
|
||||||
|
|
||||||
|
|
||||||
|
<<extract-cells-from-table>>
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main(sys.argv[1])
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
* Utils
|
||||||
|
|
||||||
|
The following code lets us specify a size for images when they are exported to
|
||||||
|
html.
|
||||||
|
|
||||||
|
Org supports specifying an export size for an image by putting the ~#+ATTR_HTML:
|
||||||
|
:width 100px~ before the image. But since our images are in a results drawer, we
|
||||||
|
need a way for our results drawer to do that for us automatically.
|
||||||
|
|
||||||
|
Adding ~#+ATTR_HTML~ after the beginning of the result block introduces a new
|
||||||
|
problem. Org-babel no longer recognizes the result as a result block and doesn't
|
||||||
|
remove it when a src block is re-evaluated, so we end up just appending new
|
||||||
|
results on each evaluation.
|
||||||
|
|
||||||
|
There is nothing configurable that will tell org-babel to remove our line. But
|
||||||
|
we can define a function to do some cleanup and then add it as a before hook
|
||||||
|
with ~advice-add~.
|
||||||
|
|
||||||
|
#+NAME: html-image-size
|
||||||
|
#+BEGIN_SRC emacs-lisp :var text="" :var width="100%" :var height="100%" :results none
|
||||||
|
(concat "#+ATTR_HTML: :width " width " :height " height "\n[[file:" text "]]")
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+BEGIN_SRC emacs-lisp :results none
|
||||||
|
(defun remove-attributes-from-src-block-result (&rest args)
|
||||||
|
(let ((location (org-babel-where-is-src-block-result))
|
||||||
|
(attr-regexp "[ ]*#\\+ATTR.*$"))
|
||||||
|
(when location
|
||||||
|
(save-excursion
|
||||||
|
(goto-char location)
|
||||||
|
(when (looking-at (concat org-babel-result-regexp ".*$"))
|
||||||
|
(next-line)
|
||||||
|
(while (looking-at attr-regexp)
|
||||||
|
(kill-whole-line)))))))
|
||||||
|
|
||||||
|
(advice-add 'org-babel-remove-result :before #'remove-attributes-from-src-block-result)
|
||||||
|
(advice-add 'org-babel-execute-src-block :before #'remove-attributes-from-src-block-result)
|
||||||
|
#+END_SRC
|
||||||
|
|
After Width: | Height: | Size: 2.9 KiB |
After Width: | Height: | Size: 3.2 KiB |
After Width: | Height: | Size: 4.0 KiB |
After Width: | Height: | Size: 1.6 KiB |
After Width: | Height: | Size: 1.9 KiB |
After Width: | Height: | Size: 2.9 KiB |
After Width: | Height: | Size: 1.8 KiB |
After Width: | Height: | Size: 1.7 KiB |
After Width: | Height: | Size: 2.3 KiB |
After Width: | Height: | Size: 1.3 KiB |
After Width: | Height: | Size: 1.8 KiB |
After Width: | Height: | Size: 2.3 KiB |
After Width: | Height: | Size: 1.8 KiB |
After Width: | Height: | Size: 1.9 KiB |
After Width: | Height: | Size: 2.6 KiB |
After Width: | Height: | Size: 2.1 KiB |
After Width: | Height: | Size: 1.9 KiB |
After Width: | Height: | Size: 1.8 KiB |
After Width: | Height: | Size: 2.0 KiB |
After Width: | Height: | Size: 2.3 KiB |
After Width: | Height: | Size: 2.4 KiB |
After Width: | Height: | Size: 2.1 KiB |
After Width: | Height: | Size: 1.7 KiB |
After Width: | Height: | Size: 2.6 KiB |
After Width: | Height: | Size: 2.4 KiB |
After Width: | Height: | Size: 2.1 KiB |
After Width: | Height: | Size: 2.2 KiB |
After Width: | Height: | Size: 1.8 KiB |
After Width: | Height: | Size: 2.7 KiB |
After Width: | Height: | Size: 2.0 KiB |
After Width: | Height: | Size: 2.9 KiB |
After Width: | Height: | Size: 3.3 KiB |
After Width: | Height: | Size: 901 B |
After Width: | Height: | Size: 1.0 KiB |
After Width: | Height: | Size: 818 B |
After Width: | Height: | Size: 1.1 KiB |
After Width: | Height: | Size: 11 KiB |
After Width: | Height: | Size: 6.8 KiB |
After Width: | Height: | Size: 12 KiB |
After Width: | Height: | Size: 1008 B |
After Width: | Height: | Size: 927 B |
After Width: | Height: | Size: 1.2 KiB |
After Width: | Height: | Size: 787 B |
After Width: | Height: | Size: 785 B |
After Width: | Height: | Size: 5.4 KiB |
After Width: | Height: | Size: 200 KiB |
After Width: | Height: | Size: 1.4 MiB |
After Width: | Height: | Size: 157 KiB |
After Width: | Height: | Size: 1.0 KiB |
After Width: | Height: | Size: 1.9 KiB |
After Width: | Height: | Size: 207 KiB |
After Width: | Height: | Size: 3.4 KiB |
After Width: | Height: | Size: 25 KiB |
After Width: | Height: | Size: 202 KiB |
@ -0,0 +1,22 @@
|
|||||||
|
import setuptools
|
||||||
|
|
||||||
|
with open("README.md", "r") as fh:
|
||||||
|
long_description = fh.read()
|
||||||
|
|
||||||
|
setuptools.setup(
|
||||||
|
name="example-pkg-YOUR-USERNAME-HERE", # Replace with your own username
|
||||||
|
version="0.0.1",
|
||||||
|
author="Example Author",
|
||||||
|
author_email="author@example.com",
|
||||||
|
description="A small example package",
|
||||||
|
long_description=long_description,
|
||||||
|
long_description_content_type="text/markdown",
|
||||||
|
url="https://github.com/pypa/sampleproject",
|
||||||
|
packages=setuptools.find_packages(),
|
||||||
|
classifiers=[
|
||||||
|
"Programming Language :: Python :: 3",
|
||||||
|
"License :: OSI Approved :: MIT License",
|
||||||
|
"Operating System :: OS Independent",
|
||||||
|
],
|
||||||
|
python_requires='>=3.6',
|
||||||
|
)
|
@ -0,0 +1 @@
|
|||||||
|
|
@ -0,0 +1,36 @@
|
|||||||
|
from contextlib import contextmanager
|
||||||
|
import functools
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
from bs4 import BeautifulSoup as bs
|
||||||
|
import requests
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
logger = get_logger()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def working_dir(directory):
|
||||||
|
original_working_dir = os.getcwd()
|
||||||
|
try:
|
||||||
|
os.chdir(directory)
|
||||||
|
yield directory
|
||||||
|
finally:
|
||||||
|
os.chdir(original_working_dir)
|
||||||
|
|
||||||
|
|
||||||
|
def download(url, filepath):
|
||||||
|
response = request_get(url)
|
||||||
|
data = response.content
|
||||||
|
with open(filepath, "wb") as f:
|
||||||
|
f.write(data)
|
||||||
|
|
||||||
|
|
||||||
|
def make_tempdir(identifier):
|
||||||
|
return tempfile.mkdtemp(prefix="{}_".format(identifier))
|