
Abstract

Proper names, whether English or non-English,
have several different spellings when transliterated
from a non-English source language into English.
Knowing the different variations can significantly
improve the results of name-searches on various
source texts, especially when recall is important. In
this paper we propose two novel phonetic models
to generate numerous candidate variant spellings of
a name. Our methods show threefold improvement
over the baseline and generate four times as many
good name variants compared to a human while
maintaining a respectable precision of 0.68.

1 Introduction

In this paper, we present a novel approach for generating
variant spellings of a person’s name.
 Proper names in general are very important in text. Since
news stories especially revolve around people, places, or
organizations, proper names play a major role in helping
one distinguish between a general event (like a war) and a
specific event (like the Iraq war) [Raghavan and Allan,
2005].
 Proper names in English are spelled in various ways. De-
spite the existence of one or more standard forms for some-
one’s name, it is common to find variations in translitera-
tions of that name in different source texts, such as Osama
vs Usama. The problem is more pronounced when dealing
with non-English names or when dealing with spellings by
non-native speakers.
 Missing some spelling variations of a name may result in
omission of some useful information in a search about a
person. For example, imagine a defense analyst or reporter
searching English transcripts of Arabic TV news or news-
paper articles for information about some person. Transcrib-
ers or different news sources, may spell the name of the
person differently and some relevant information about this
person may never be found. An automated spelling variant
generator would help locate all potential mentions of the
person in question.
 Another useful application for a variant spelling generator
is transliteration. Imagine a transliterator that uses a pho-
neme-based model to transliterate from a non-English

source language to English [Knight and Graehl, 1997]. Such
a transliterator is quite likely to generate a spelling that is
not the most commonly used spelling of a name. In such a
case, we could use the spelling variant model to match up
this spelling to its more commonly accepted variant(s).
 Of course generating all the possible spelling variants of a
name is a next to impossible task, given that this would re-
quire one to simulate all the possible corruptions that a se-
quence of characters could undergo to produce a reasonable
spelling. But one could approximate this by using different
models.
 In this paper we propose two previously unexplored
methods to generate the spelling variants of a person name.
Our first method is a unique phoneme-based approach using
the CMU pronouncing dictionary

1
. Here we first employ the

EM algorithm [Baum, 1972; Dempster et al., 1977] to learn
the mappings between letters and the corresponding pho-
nemes in both directions. We then use a noisy channel
model based translator to first generate n-best phoneme se-
quences for a name and then use a reverse translator to gen-
erate the n-best name variants for the phoneme sequences.
 Our second method is a completely unsupervised method
in which we collect a list of over 7 million names (words)
using a named entity extraction system applied to a large
text corpus (about 10 GB plain text) collected from the web,
and then use a popular sound based algorithm called Soun-
dex [Knuth, 1973] to group together the variants in order to
make them searchable.
 As the baseline, we use a system based on the names list
obtained from the US Census

2
. This list consists of about

89,000 last names and 5500 first names (male and female)
collected by the US census bureau

3
. Given a name, we use

levenshtein distance or edit distance [Hall and Dowling,
1980] to find the names that are possible variants of a given
name.
 To the best of our knowledge, no one has ever used a bi-
directional phoneme-based approach the way we have to
generate spelling variants. Raghavan and Allan [2004] have
used Soundex codes to normalize names in a corpus for the
purpose of story link detection task and Zobel and Dart

1 http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2 http://www.census.gov/genealogy/names/names_files.html
3 http://www.census.gov

Phonetic Models for Generating Spelling Variants

Rahul Bhagat and Eduard Hovy
Information Sciences Institute

University Of Southern California
4676 Admiralty Way, Marina Del Rey, CA 90292-6695

{rahul, hovy}@isi.edu

[1996] have used Soundex as one of the phonetic string
matching algorithms for name retrieval.
 The rest of the paper is organized as follows. Section 2
discusses some related work, section 3 describes our meth-
ods in detail, section 4 describes our experiments, section 5
presents the results and section 6 discusses our conclusion
and future work.

2 Related Work

The problem of spelling variants is a well studied problem
in the information retrieval community, especially in the
context of query expansion and word conflation. For this
purpose, various methods including stemming and more
complex morphological analysis have been proposed and
widely used [Hull, 1996; Krovetz, 1993; Tzoukermann et
al., 1997]. These methods work very well with normal Eng-
lish words. However they cannot be effectively applied to
proper names given the difference in the nature of proper
names and other English words
 In the past, people have worked with proper names.
Knight and Graehl [1997] proposed a cascaded finite state
transducer (FST) based approach for name transliteration
from Japanese to English. Virga and Khudanpur [2003] pro-
posed a similar name transliteration approach for Chinese to
English to use in cross language information retrieval. Both
these approaches use sounds or pronunciations as their
bridge to go from one language to the other. They however
are targeted for transliteration between different languages
(say Japanese to English) and hence are not applicable for
generating variants in the same language. Raghavan and
Allan [2005] studied the problem of proper name spelling
variants in automatic speech recognition (ASR). They pro-
posed a number of methods to match inconsistently spelled
names in ASR. Their methods however are tailored for
speech recognition errors and require a parallel corpus of
speech and the corresponding transcriptions. Zobel and Dart
[1996] used various phonetic string matching algorithms
including Soundex for name retrieval. Their approach how-
ever deals only with matching phonetically similar names as
against generating them.
 None of these methods is suitable for our task since we
want to be able to model reasonable transformations a name
spelling could undergo to actually generate variant spellings
for a name.

3 Generating Spelling Variants

In this section, we present two distinct and complementary
approaches to generating the different spellings of a name.
In the first method, we use a supervised learning approach
to overgenerate a large number of variant spellings by varia-
tions in pronunciation. We call this the Pronunciation
learning method.
 In the second method we use a novel approach to first
obtain a large list of names, group the similar sounding
names using Soundex [Knuth, 1973], and then use Soundex
to find the different spellings for a name. We call this the
List Soundex method.

3. 1 Pronunciation Learning Method

In this method, we use the CMU pronouncing dictionary
1
, a

pronunciation dictionary for North American English, as the
data for training our models. The CMU dictionary consists
of over 125,000 English words along with their pronuncia-
tions in a fixed set of 39 phonemes.

3.1.1 Noisy Channel Model
We use the noisy channel model, which is commonly used
in machine translation and speech recognition, as our basic
model. In this framework for machine translation, the target
language sentence E has supposedly been corrupted into the
source language sentence F due to a noisy channel [Brown
et al., 1993].

 argmax P(E | F) = argmax P(E)*P(F | E) (3.1)
 E E
where –
 P(E): represents the probability of the target language
sentence E (language model)
 P(F | E): represents the probability of generating the
source language sentence F given the target language sen-
tence E (translation model)
 P(E | F): represents the probability of generating the tar-
get language sentence E given the source language sentence
F, estimated using the noisy channel model

 Similarly, in our case we assume a variant spelling of a
name to be the result of a two translation processes:

1. The characters in the original name are translated
into n-best sequences of phonemes

2. Phoneme sequences are translated back into n-best
character sequences, thus generating the variants.

We therefore have two noisy channels, one representing the
translation from a character sequence (C) to a phoneme se-
quence (Ph) (text to speech) and other representing the
translation form a phoneme sequence back to a character
sequence (speech to text).
Text to speech:
 argmax P(Ph | C) = argmax P(Ph)*P(C | Ph) (3.2)
 Ph Ph
Speech to text:
 argmax P(C | Ph) = argmax P(C)*P(Ph | C) (3.3)
 C C

3.1.2 Training
We apply the EM algorithm [Baum, 1972; Dempster et al.,
1977] in two directions to the CMU dictionary to obtain the
IBM Model-3 [Brown et al, 1993] alignments between the
characters and phonemes in both the directions. This gives
us the two translation models - P(Ph | C) and P(C | Ph).
 To obtain the phoneme language model P(Ph) we use the
125,000+ phoneme sequences from the CMU dictionary.
Using this as training data, we build a phoneme trigram lan-
guage model.
 To obtain the character language model P(C), we use the
list of 7.3 million names that we extracted from text. Using
this as training data, we build a character trigram language
model.

3.1.3 Implementation
We use the GIZA++ package [Och and Ney, 2003] to train
our translation models. We obtain the alignments between
letters and phonemes in both the directions using GIZA++
and then based on the alignments, we build translation mod-
els for both “text to speech” and “speech to text”.
 We use the CMU-Cambridge statistical language model-
ing toolkit

4
 to build the language models. We use trigram

based language models for both the letters and phonemes.
 Following Knight and Graehl [1997], we represent each
of our language models as a weighted finite state automaton
(WFSA) and each of our translation models as a weighted
finite state transducer (WFST). We then use the USC/ISI
finite state transducer toolkit Carmel

5
 to perform the com-

position between the corresponding WFST and WFSA to
obtain two noisy channel based WFST decoders – one going
from letters to phonemes (text to speech) and the other go-
ing from phonemes to letters (speech to text).
 To obtain variant spellings for a given name, we place the
two noisy channel based WFST decoders in a cascade. The
first generates an n-best list of pronunciations for a given
input name. The second then produces an n-best list of spell-
ings for each of the pronunciations. We then combine the n-
best spellings generated by each of the pronunciations and
rank the combined output by sorting it based on (a) increas-
ing order of edit distance from the original name, (b) de-
creasing order of the weight a name variant gets from the
decoder and (c) decreasing order of the number of times a
variant is generated by the different pronunciations. Ties, if
any, are broken randomly.

3.2 List Soundex Method

In this method, we use a huge database of names combined
with a phonetic sound matching algorithm called Soundex
to find variant spellings.

3.2.1 Creating a List of Names
The web contains many proper names. One could search
and create databases of names by manually collecting vari-
ous name lists like the lists for baby names, census lists etc.
 We have found that trying to create name lists manually
is not only a tedious task but also results in very sparsely
populated lists. Even the best resource of names that we
know of, the US census name list, contains fewer than
100,000 names, and those are US names only. Apart from
this, hand-created lists that are meticulously prepared by
experts are mostly well spelled names. We are interested in
finding the common misspellings of names.
 To overcome these limitations we decided to create a list
of names automatically. Using a corpus containing about
10GB of English text gathered from the web in a previous
project [Ravichandran et al., 2005], we applied the BBN
IdentiFinder, a state of the art named-entity extraction sys-
tem [Bikel et al., 1999], to it. We extracted all the entities
that the named-entity extractor tagged as “person names”.
This gave us a list of about 7.3 million unique names.

4 http://svr-www.eng.cam.ac.uk/~prc14/toolkit.html
5 http://www.isi.edu/licensed-sw/carmel

3.2.2 Soundex Algorithm
Levenshtein distance or edit distance [Hall and Dowling,
1980] is a measure of similarity between two strings, meas-
uring the number of insertions, deletions, and substitutions
required to transform a string into the other.
 Traditionally, edit distance has been used for spelling
error detection and correction [Kukich, 1992]. We can use
the same edit distance as a measure for finding names that
are close to a given name by doing a lookup in a name list.
But calculating edit distance between two strings is O(n

2
) in

the length of the strings. It is impossible in practice to use
this measure when comparing against a large list. We need
to do better. We should at least initially prune our candi-
dates down and then use edit distance on this pruned list of
candidates.
 The Soundex algorithm [Knuth, 1973], first patented in
1918 by Margaret O’Dell and Robert C. Russel, is an ap-
proximate string matching algorithm. It produces a coarse-
grained representation for a string using six phonetic classes
of human speech sounds (bilabial, labiodental, dental, alveo-
lar, velar, and glottal). The representation consists of the
first letter of the word followed by three digits that together
represent the phonetic class of that word.
 We use Soundex to divide our huge list of names into
bins of similar sounding names and then index our list on
the Soundex four-character code. Now, whenever we get a
name whose variants have to be found, we can look only at
the appropriate Soundex-bin instead of the whole list, thus
making the search for variants possible in practice.

3.2.3 Implementation
We use the named-entity extraction system BBN Identi-
finder to identify named entities in our corpus. We then col-
lect all the “person” names from the tagged corpus and find
all the unique names along with their corpus frequencies.
Then we run Soundex on the list of names and divide then
into bins of similar sounding names. We obtain about 7000
bins, with on average 1000 names in each bin.
 To obtain the variants of a name, we first find the Soun-
dex code for that name. Then in the corresponding Soundex-
bin, we find the n-best variants by sorting them based on (a)
increasing order of edit distance from the original name and
(b) decreasing order of frequency in the corpus. Ties, if any,
are broken randomly.

4 Experiments

4.1 Experimental Setup

It is not immediately clear how one can evaluate a name
spelling generator. We therefore perform experiments to
measure the performance of the different methods on the
spelling variants generation task.
 First, we randomly select 30 US names from a list of
baby names. We run each of the systems (including the
baseline) on these names and generate the top 25 variants
for each of these names. We then ask a human to look at the
names generated by each system and mark then as good or

of top out-
puts

Pronunciation learning List Soundex Baseline

 Precision Recall F-score Precision Recall F-score Precision Recall F-score

5 0.97 0.28 0.39 0.80 0.24 0.32 0.43 0.18 0.21

10 0.89 0.45 0.54 0.76 0.36 0.46 0.32 0.23 0.22

15 0.78 0.47 0.54 0.74 0.50 0.55 0.26 0.27 0.21

20 0.71 0.50 0.53 0.73 0.53 0.56 0.21 0.27 0.20

25 0.68 0.52 0.54 0.68 0.58 0.58 0.19 0.27 0.19

Table 1: Results

bad variants. We use this human judgment as the measure
for precision (Section 5.1). To measure recall (Section 5.1),
we ask a human to generate possible variants for each of the
30 names and then compare the output of each of the sys-
tems with the name variant list generated by the human.

4.2 Baseline

The US Census list, one of the largest publicly available list
of US names, contains about 89,000 last names and about
5,000 first names (male and female). Apart from the names
itself, the list provides information about the frequency of
each name. We use this list as the resource for building our
baseline system.
 For each of the 30 test names, we obtain variants by find-
ing the top 25 names that are closest in levenshtein edit dis-
tance to the given name and sort them based on (a) increas-
ing order of edit distance, (b) decreasing order of frequency.

5. Results

5.1 Evaluation Metrics

We use the standard Natural Language Processing measures
of precision, recall, and F-score to measure the performance
of each of the systems.
 To obtain precision, we ask a human to look at all the
outputs generated by each of the systems and mark then as
correct or incorrect variants. Then the precision (P) for each
system can be obtained as-

outputs system of #

 outputs systemcorrect of #
=P (5.1)

 Given that we do not have a comprehensive gold standard
list of variants of a name, finding true recall is quite hard.
But we can obtain recall of each system relative to a human.
To do this, we ask a human to look at each of the 30 test
names and generate a set of possible variants for each name.
We then compare the output of each system to that of the
human generated list. Then the recall (R) for each system
can be obtained as-

listhuman in the outputs of #

list human in the outputs system of #
=R (5.2)

The F-score (F) is the harmonic mean of the precision and
recall. It is calculated as-

RP

 R*P*2

+

=F (5.3)

5.2 Result Scores and Graphs

Table 1 shows the comparison of precision, recall, and F-
scores of the pronunciation generation, list Soundex, and
baseline systems for different numbers of outputs. The out-
puts are varied from top 5 to top 25 and their effect on the
macro-averaged precision, macro-averaged recall, and
macro-averaged F-score is shown.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25

of top outputs

P
re

c
is

io
n

Pronunciation learning

List Soundex

Baseline

Figure 1: Precision graph

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25

of top outputs

R
e
c

a
ll Pronunciation learning

List Soundex

Baseline

Figure 2: Recall graph

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25

of top outputs

F
-s

c
o

re Pronunciation learning

List Soundex

Baseline

Figure 3: F-score graph

 Figures 1, 2 and 3 graph the precision, recall, and F-
scores respectively of the three systems corresponding to the
number of outputs of the system varying from top 5 to top
25.
 We find that for the top 25 name variants, the perform-
ances of the pronunciation learning and the list Soundex
methods are very close to each other. The pronunciation
learning method has an F-score of 0.54 while the list soun-
dex method has an F-score of 0.58. Both the systems show
roughly three-fold improvement over the baseline, which
has an F-score of 0.19. The result is validated by the two-
tailed paired Student’s t-test [Manning and Schütze, 1999].
The t-test shows a statistically significant difference at
p<0.0005 between the baseline and both the systems. How-
ever, it shows no statistically significant difference between
the performances of the pronunciation learning and list
Soundex systems themselves.
 The graphs for the three systems show an intuitive trend.
We find that as we increase the number of outputs that each
system generates from 5 to 25, the precision of each system
goes down slowly while the recall goes up.

5.3 Discussion

It is clear from the results above that the pronunciation
based methods for generating name variants reap good re-
sults. Further it is clear that by using these methods, signifi-
cant improvement over the baseline can be achieved.
 What is also encouraging is the relative recall compared
to humans. We find that for the 30 test names, a human was
able to generate on an average four variant spellings. How-
ever both the pronunciation generation and list soundex
methods generated 25 variants with a precision of 0.68, i.e.,
about 17 correct variants, which is four times what a human
could generate. This of course goes in line with the general
observation that humans are good at telling a good thing
from a bad but are not so good at generating a set of possi-
ble good things.
 What is also interesting is that the precision, recall, and F-
scores of the pronunciation generation and list Soundex
methods are significantly better than the baseline at all the
output sizes. This came as a bit of a surprise initially, be-
cause we expected the baseline to perform well at least
when the number of outputs is small, given that the baseline

system uses a large meticulously prepared list of names (US
census list). We however feel now that the very fact that the
US census list was meticulously prepared went against the
baseline given the nature of the task, where it is as important
to have misspellings as to have correct spellings.

6. Conclusion

The results here clearly show the success of using the pho-
netic models for the purpose of generating spelling variants.
We attribute this success to the fact that spelling variants
more often than not have to do with the ambiguous mapping
between pronunciations and their corresponding rendering
into letter sequences (spellings). Our models derive their
power from the very fact that different people on one hand
tend to pronounce the same letter sequences differently and
on the other tend to write different spellings for the same
pronunciation.
 One other striking observation is the four-fold increase in
the number of good name variations compared to the vari-
ants generated by a human. This clearly reinforces the need
of a variant generator for the name query expansion task.
 Another interesting conclusion is the clear superiority of
the automatic acquisition of large name lists compared to
the slow manual preparation for the purpose of generating
variants even in the low recall ranges (top 5 outputs), as is
demonstrated by the high performance of the list Soundex
method compared to the baseline.
 In the future, we would like to build a hybrid system that
can combine the outputs of both the algorithms and rank the
combined output in a meaningful way. We would also like
to test our algorithms with non-English names. Our initial
experiments with non-English names look very promising
though we presently do not have a baseline to compare
against for these names. We would further like to apply our
algorithms to other entities, such as technical terms, that are
likely to be misspelled for the same reason as person names.
Also, in the future we plan to modify the algorithms to tailor
the variants for the kind of mistakes that are more likely to
occur while spelling names from different languages and by
native speakers of different languages owing to the different
sounds present in those languages.

Acknowledgments

The authors would like to thank Mr. Andrew Philpot for
providing the list of baby names with their variants and Dr.
Patrick Pantel for his expert advice on evaluation.

References

[Baum, 1972] L.E. Baum. An Inequality and Associated
Maximization Technique in Statistical Estimation of a
Markov Process. Inequalities 3:1–8, 1972.

[Bikel et al., 1999] Daniel M. Bikel, Richard L. Schwartz
and Ralph M. Weischedel. An algorithm that learns
what's in a name. Machine Learning, vol. 34, no. 1-3,
pages. 211–231, 1999.

[Brown et al., 1993] Peter Brown, Stephan Della Pietra,
Vincent Della Pietra, and Robert Mercer. Mathematics
of machine translation. Computational Linguistics,
19(2), 1993.

[Dempster et al., 1977] A.P. Dempster, N.M. Laird, and D.
Rubin. Maximum-likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Soci-

ety, 39(B):1–38, 1977.

[Hall and Dowling, 1980] P. Hall and G. Dowling. Ap-
proximate string matching. Computing Surveys,
12(4):381–402, 1980.

[Hull, 1996] D. A. Hull. Stemming algorithms: A case study
for detailed evaluation. Journal of the American Society

of Information Science, 47(1):70–84, 1996.

[Knight and Graehl, 1997] Kevin. Knight and Jonathan
Graehl. Machine Transliteration. In Proceedings of the
Thirty-Fifth Annual Meeting of the Association for Com-
putational Linguistics and Eighth Conference of the
European Chapter of the Association for Computational
Linguistics, pages 128–135, Somerset, New Jersey,
1997. Association for Computational Linguistics.

[Krovetz, 1993] R. Krovetz. Viewing Morphology as an
Inference Process,. In Proceedings of the 16th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 191–203,
1993.

[Knuth, 1973] D. Knuth. The Art of Computer Program-
ming – Volume 3: Sorting and Searching. Addison-
Wesley Publishing Company, 1973

[Kukich, 1992] K. Kukich. Techniques for Automatically
Correcting Words in Text. Computing Surveys,
24(4):377–440, Dec 1992.

[Manning and Schütze, 1999] Christopher D. Manning and
Hinrich Schütze. Foundations of Statistical Natural
Language Processing, 1999. The MIT Press, Cambridge,
MA.

[Och and Ney, 2003] Franz Josef Och and Hermann Ney. A
systematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51, 2003.

[Raghavan and Allan, 2005] Hema Raghavan and James
Allan. Matching Inconsistently Spelled Names in Auto-
matic Speech Recognizer Output for Information Re-
trieval. In Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in
Natural Language Processing, pages 451–458, Vancou-
ver, British Columbia, Canada, October 2005. Associa-
tion for Computational Linguistics.

[Raghavan and Allan, 2004] Hema Raghavan and James
Allan. Using Soundex Codes for Indexing Names in
ASR documents. In Proceedings of the Workshop on In-
terdisciplinary Approaches to Speech Indexing and Re-
trieval at Humal Language Technology Conference and
North American chapter of Association of Computa-

tional Linguistics, pages 22–27, Boston, MA, USA,
2004. Association for Computational Linguistics.

[Ravichandran et al., 2005] Deepak Ravichandran, Patrick
Pantel and Eduard Hovy. Randomized Algorithms and
NLP: Using Locality Sensitive Hash Functions for High
Speed Noun Clustering. In Proceedings of the forty-third
Annual Meeting of the Association for Computational,
pages 622–629, Ann Arbor, Michigan, USA, June 2005.
Association for Computational Linguistics.

[Tzoukermann, 1997] E. Tzoukermann, J. Klavans, and C.
Jacquemin. Effective use of natural language processing
techniques for automatic conation of multi-word terms:
The role of derivational morphology, part of speech tag-
ging, and shallow parsing. In Research and Development

in Information Retrieval, pages 148–155, 1997.

[Virga and Khudanpur, 2003] Paola Virga and Sanjeev
Khudanpur. Transliteration of proper names in cross-
language applications. In Proceedings of the 26th ACM

SIGIR conference, pages 365–366, 2003. ACM Press.

[Zobel and Dart, 1996] Justin Zobel and Philip Dart. Pho-
netic String Matching: Lessons from Information Re-
trieval. In Poceedings of the 19th International Confer-
ence on Research and Development in Information Re-
trieval, pages 166–172, Zurich, Switzerland, 1996. ACM
Press.

