
Abstract 

Proper names, whether English or non-English, 
have several different spellings when transliterated 
from a non-English source language into English. 
Knowing the different variations can significantly 
improve the results of name-searches on various 
source texts, especially when recall is important. In 
this paper we propose two novel phonetic models 
to generate numerous candidate variant spellings of 
a name. Our methods show threefold improvement 
over the baseline and generate four times as many 
good name variants compared to a human while 
maintaining a respectable precision of 0.68. 

1 Introduction 

In this paper, we present a novel approach for generating 
variant spellings of a person’s name. 
 Proper names in general are very important in text. Since 
news stories especially revolve around people, places, or 
organizations, proper names play a major role in helping 
one distinguish between a general event (like a war) and a 
specific event (like the Iraq war) [Raghavan and Allan, 
2005]. 
 Proper names in English are spelled in various ways. De-
spite the existence of one or more standard forms for some-
one’s name, it is common to find variations in translitera-
tions of that name in different source texts, such as Osama 
vs Usama. The problem is more pronounced when dealing 
with non-English names or when dealing with spellings by 
non-native speakers. 
 Missing some spelling variations of a name may result in 
omission of some useful information in a search about a 
person. For example, imagine a defense analyst or reporter 
searching English transcripts of Arabic TV news or news-
paper articles for information about some person. Transcrib-
ers or different news sources, may spell the name of the 
person differently and some relevant information about this 
person may never be found.  An automated spelling variant 
generator would help locate all potential mentions of the 
person in question.  
 Another useful application for a variant spelling generator 
is transliteration. Imagine a transliterator that uses a pho-
neme-based model to transliterate from a non-English 

source language to English [Knight and Graehl, 1997]. Such 
a transliterator is quite likely to generate a spelling that is 
not the most commonly used spelling of a name. In such a 
case, we could use the spelling variant model to match up 
this spelling to its more commonly accepted variant(s). 
 Of course generating all the possible spelling variants of a 
name is a next to impossible task, given that this would re-
quire one to simulate all the possible corruptions that a se-
quence of characters could undergo to produce a reasonable 
spelling. But one could approximate this by using different 
models. 
 In this paper we propose two previously unexplored 
methods to generate the spelling variants of a person name. 
Our first method is a unique phoneme-based approach using 
the CMU pronouncing dictionary

1
. Here we first employ the 

EM algorithm [Baum, 1972; Dempster et al., 1977] to learn 
the mappings between letters and the corresponding pho-
nemes in both directions. We then use a noisy channel 
model based translator to first generate n-best phoneme se-
quences for a name and then use a reverse translator to gen-
erate the n-best name variants for the phoneme sequences. 
 Our second method is a completely unsupervised method 
in which we collect a list of over 7 million names (words) 
using a named entity extraction system applied to a large 
text corpus (about 10 GB plain text) collected from the web, 
and then use a popular sound based algorithm called Soun-
dex [Knuth, 1973] to group together the variants in order to 
make them searchable. 
 As the baseline, we use a system based on the names list 
obtained from the US Census

2
. This list consists of about 

89,000 last names and 5500 first names (male and female) 
collected by the US census bureau

3
. Given a name, we use 

levenshtein distance or edit distance [Hall and Dowling, 
1980] to find the names that are possible variants of a given 
name. 
 To the best of our knowledge, no one has ever used a bi-
directional phoneme-based approach the way we have to 
generate spelling variants. Raghavan and Allan [2004] have 
used Soundex codes to normalize names in a corpus for the 
purpose of story link detection task and Zobel and Dart 

                                                 
1 http://www.speech.cs.cmu.edu/cgi-bin/cmudict 
2 http://www.census.gov/genealogy/names/names_files.html 
3 http://www.census.gov 
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[1996] have used Soundex as one of the phonetic string 
matching algorithms for name retrieval.  
 The rest of the paper is organized as follows.  Section 2 
discusses some related work, section 3 describes our meth-
ods in detail, section 4 describes our experiments, section 5 
presents the results and section 6 discusses our conclusion 
and future work. 

2 Related Work 

The problem of spelling variants is a well studied problem 
in the information retrieval community, especially in the 
context of query expansion and word conflation. For this 
purpose, various methods including stemming and more 
complex morphological analysis have been proposed and 
widely used [Hull, 1996; Krovetz, 1993; Tzoukermann et 
al., 1997].  These methods work very well with normal Eng-
lish words. However they cannot be effectively applied to 
proper names given the difference in the nature of proper 
names and other English words 
 In the past, people have worked with proper names. 
Knight and Graehl [1997] proposed a cascaded finite state 
transducer (FST) based approach for name transliteration 
from Japanese to English. Virga and Khudanpur [2003] pro-
posed a similar name transliteration approach for Chinese to 
English to use in cross language information retrieval. Both 
these approaches use sounds or pronunciations as their 
bridge to go from one language to the other. They however 
are targeted for transliteration between different languages 
(say Japanese to English) and hence are not applicable for 
generating variants in the same language. Raghavan and 
Allan [2005] studied the problem of proper name spelling 
variants in automatic speech recognition (ASR). They pro-
posed a number of methods to match inconsistently spelled 
names in ASR. Their methods however are tailored for 
speech recognition errors and require a parallel corpus of 
speech and the corresponding transcriptions. Zobel and Dart 
[1996] used various phonetic string matching algorithms 
including Soundex for name retrieval. Their approach how-
ever deals only with matching phonetically similar names as 
against generating them. 
 None of these methods is suitable for our task since we 
want to be able to model reasonable transformations a name 
spelling could undergo to actually generate variant spellings 
for a name. 

3 Generating Spelling Variants 

In this section, we present two distinct and complementary 
approaches to generating the different spellings of a name. 
In the first method, we use a supervised learning approach 
to overgenerate a large number of variant spellings by varia-
tions in pronunciation. We call this the Pronunciation 
learning method. 
 In the second method we use a novel approach to first 
obtain a large list of names, group the similar sounding 
names using Soundex [Knuth, 1973], and then use Soundex 
to find the different spellings for a name. We call this the 
List Soundex method. 

3. 1 Pronunciation Learning Method 

In this method, we use the CMU pronouncing dictionary
1
, a 

pronunciation dictionary for North American English, as the 
data for training our models. The CMU dictionary consists 
of over 125,000 English words along with their pronuncia-
tions in a fixed set of 39 phonemes. 

3.1.1  Noisy Channel Model 
We use the noisy channel model, which is commonly used 
in machine translation and speech recognition, as our basic 
model. In this framework for machine translation, the target 
language sentence E has supposedly been corrupted into the 
source language sentence F due to a noisy channel [Brown 
et al., 1993]. 

 argmax P(E | F) = argmax P(E)*P(F | E)     (3.1) 
       E        E 
where –  
 P(E): represents the probability of the target language 
sentence E (language model)  
 P(F | E): represents the probability of generating the 
source language sentence F given the target language sen-
tence E (translation model) 
 P(E | F): represents the probability of generating the tar-
get language sentence E given the source language sentence 
F, estimated using the noisy channel model 

 Similarly, in our case we assume a variant spelling of a 
name to be the result of a two translation processes:  

1. The characters in the original name are translated 
into n-best sequences of phonemes 

2. Phoneme sequences are translated back into n-best 
character sequences, thus generating the variants. 

We therefore have two noisy channels, one representing the 
translation from a character sequence (C) to a phoneme se-
quence (Ph) (text to speech) and other representing the 
translation form a phoneme sequence back to a character 
sequence (speech to text). 
Text to speech: 
 argmax P(Ph | C) = argmax P(Ph)*P(C | Ph)   (3.2) 
      Ph         Ph 
Speech to text: 
 argmax P(C | Ph) = argmax P(C)*P(Ph | C)   (3.3) 
      C          C 

3.1.2  Training 
We apply the EM algorithm [Baum, 1972; Dempster et al., 
1977] in two directions to the CMU dictionary to obtain the 
IBM Model-3 [Brown et al, 1993] alignments between the 
characters and phonemes in both the directions. This gives 
us the two translation models - P(Ph | C) and P(C | Ph). 
 To obtain the phoneme language model P(Ph) we use the 
125,000+ phoneme sequences from the CMU dictionary. 
Using this as training data, we build a phoneme trigram lan-
guage model. 
 To obtain the character language model P(C), we use the 
list of 7.3 million names that we extracted from text. Using 
this as training data, we build a character trigram language 
model. 



3.1.3  Implementation 
We use the GIZA++ package [Och and Ney, 2003] to train 
our translation models. We obtain the alignments between 
letters and phonemes in both the directions using GIZA++ 
and then based on the alignments, we build translation mod-
els for both “text to speech” and “speech to text”. 
 We use the CMU-Cambridge statistical language model-
ing toolkit

4
 to build the language models. We use trigram 

based language models for both the letters and phonemes.  
 Following Knight and Graehl [1997], we represent each 
of our language models as a weighted finite state automaton 
(WFSA) and each of our translation models as a weighted 
finite state transducer (WFST). We then use the USC/ISI 
finite state transducer toolkit Carmel

5
 to perform the com-

position between the corresponding WFST and WFSA to 
obtain two noisy channel based WFST decoders – one going 
from letters to phonemes (text to speech) and the other go-
ing from phonemes to letters (speech to text). 
 To obtain variant spellings for a given name, we place the 
two noisy channel based WFST decoders in a cascade. The 
first generates an n-best list of pronunciations for a given 
input name. The second then produces an n-best list of spell-
ings for each of the pronunciations. We then combine the n-
best spellings generated by each of the pronunciations and 
rank the combined output by sorting it based on (a) increas-
ing order of edit distance from the original name, (b) de-
creasing order of the weight a name variant gets from the 
decoder and (c) decreasing order of the number of times a 
variant is generated by the different pronunciations. Ties, if 
any, are broken randomly. 

3.2 List Soundex Method 

In this method, we use a huge database of names combined 
with a phonetic sound matching algorithm called Soundex 
to find variant spellings. 

3.2.1  Creating a List of Names 
The web contains many proper names. One could search 
and create databases of names by manually collecting vari-
ous name lists like the lists for baby names, census lists etc.  
 We have found that trying to create name lists manually 
is not only a tedious task but also results in very sparsely 
populated lists. Even the best resource of names that we 
know of, the US census name list, contains fewer than 
100,000 names, and those are US names only. Apart from 
this, hand-created lists that are meticulously prepared by 
experts are mostly well spelled names. We are interested in 
finding the common misspellings of names. 
 To overcome these limitations we decided to create a list 
of names automatically. Using a corpus containing about 
10GB of English text gathered from the web in a previous 
project [Ravichandran et al., 2005], we applied the BBN 
IdentiFinder, a state of the art named-entity extraction sys-
tem [Bikel et al., 1999], to it. We extracted all the entities 
that the named-entity extractor tagged as “person names”. 
This gave us a list of about 7.3 million unique names. 

                                                 
4 http://svr-www.eng.cam.ac.uk/~prc14/toolkit.html 
5 http://www.isi.edu/licensed-sw/carmel 

3.2.2  Soundex Algorithm 
Levenshtein distance or edit distance [Hall and Dowling, 
1980] is a measure of similarity between two strings, meas-
uring the number of insertions, deletions, and substitutions 
required to transform a string into the other.  
 Traditionally, edit distance has been used for spelling 
error detection and correction [Kukich, 1992]. We can use 
the same edit distance as a measure for finding names that 
are close to a given name by doing a lookup in a name list. 
But calculating edit distance between two strings is O(n

2
) in 

the length of the strings. It is impossible in practice to use 
this measure when comparing against a large list. We need 
to do better. We should at least initially prune our candi-
dates down and then use edit distance on this pruned list of 
candidates. 
 The Soundex algorithm [Knuth, 1973], first patented in 
1918 by Margaret O’Dell and Robert C. Russel, is an ap-
proximate string matching algorithm. It produces a coarse-
grained representation for a string using six phonetic classes 
of human speech sounds (bilabial, labiodental, dental, alveo-
lar, velar, and glottal). The representation consists of the 
first letter of the word followed by three digits that together 
represent the phonetic class of that word. 
 We use Soundex to divide our huge list of names into 
bins of similar sounding names and then index our list on 
the Soundex four-character code. Now, whenever we get a 
name whose variants have to be found, we can look only at 
the appropriate Soundex-bin instead of the whole list, thus 
making the search for variants possible in practice. 

3.2.3  Implementation 
We use the named-entity extraction system BBN Identi-
finder to identify named entities in our corpus. We then col-
lect all the “person” names from the tagged corpus and find 
all the unique names along with their corpus frequencies. 
Then we run Soundex on the list of names and divide then 
into bins of similar sounding names. We obtain about 7000 
bins, with on average 1000 names in each bin. 
 To obtain the variants of a name, we first find the Soun-
dex code for that name. Then in the corresponding Soundex-
bin, we find the n-best variants by sorting them based on (a) 
increasing order of edit distance from the original name and 
(b) decreasing order of frequency in the corpus. Ties, if any, 
are broken randomly. 

4 Experiments 

4.1 Experimental Setup 

It is not immediately clear how one can evaluate a name 
spelling generator.  We therefore perform experiments to 
measure the performance of the different methods on the 
spelling variants generation task.  
 First, we randomly select 30 US names from a list of 
baby names. We run each of the systems (including the 
baseline) on these names and generate the top 25 variants 
for each of these names. We then ask a human to look at the 
names generated by each system and mark then as good or  



# of top out-
puts 

Pronunciation learning List Soundex Baseline 

 Precision Recall F-score Precision Recall F-score Precision Recall F-score 

5 0.97 0.28 0.39 0.80 0.24 0.32 0.43 0.18 0.21 

10 0.89 0.45 0.54 0.76 0.36 0.46 0.32 0.23 0.22 

15 0.78 0.47 0.54 0.74 0.50 0.55 0.26 0.27 0.21 

20 0.71 0.50 0.53 0.73 0.53 0.56 0.21 0.27 0.20 

25 0.68 0.52 0.54 0.68 0.58 0.58 0.19 0.27 0.19 

 
Table 1: Results 

 
bad variants. We use this human judgment as the measure 
for precision (Section 5.1). To measure recall (Section 5.1), 
we ask a human to generate possible variants for each of the 
30 names and then compare the output of each of the sys-
tems with the name variant list generated by the human. 

4.2 Baseline 

The US Census list, one of the largest publicly available list 
of US names, contains about 89,000 last names and about 
5,000 first names (male and female). Apart from the names 
itself, the list provides information about the frequency of 
each name. We use this list as the resource for building our 
baseline system. 
 For each of the 30 test names, we obtain variants by find-
ing the top 25 names that are closest in levenshtein edit dis-
tance to the given name and sort them based on (a) increas-
ing order of edit distance, (b) decreasing order of frequency. 

5. Results 

5.1 Evaluation Metrics 

We use the standard Natural Language Processing measures 
of precision, recall, and F-score to measure the performance 
of each of the systems. 
 To obtain precision, we ask a human to look at all the 
outputs generated by each of the systems and mark then as 
correct or incorrect variants. Then the precision (P) for each 
system can be obtained as- 

   
outputs system of #

 outputs systemcorrect  of #
=P       (5.1) 

 Given that we do not have a comprehensive gold standard 
list of variants of a name, finding true recall is quite hard. 
But we can obtain recall of each system relative to a human. 
To do this, we ask a human to look at each of the 30 test 
names and generate a set of possible variants for each name. 
We then compare the output of each system to that of the 
human generated list. Then the recall (R) for each system 
can be obtained as- 

  
listhuman  in the outputs of #

list human  in the outputs system of #
=R    (5.2) 

The F-score (F) is the harmonic mean of the precision and 
recall. It is calculated as- 

RP

 R*P*2

+

=F           (5.3) 

5.2 Result Scores and Graphs 

Table 1 shows the comparison of precision, recall, and F-
scores of the pronunciation generation, list Soundex, and 
baseline systems for different numbers of outputs. The out-
puts are varied from top 5 to top 25 and their effect on the 
macro-averaged precision, macro-averaged recall, and 
macro-averaged F-score is shown. 
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Figure 1: Precision graph 
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Figure 2: Recall graph 
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Figure 3: F-score graph 

 Figures 1, 2 and 3 graph the precision, recall, and F-
scores respectively of the three systems corresponding to the 
number of outputs of the system varying from top 5 to top 
25. 
 We find that for the top 25 name variants, the perform-
ances of the pronunciation learning and the list Soundex 
methods are very close to each other. The pronunciation 
learning method has an F-score of 0.54 while the list soun-
dex method has an F-score of 0.58. Both the systems show 
roughly three-fold improvement over the baseline, which 
has an F-score of 0.19. The result is validated by the two-
tailed paired Student’s t-test [Manning and Schütze, 1999]. 
The t-test shows a statistically significant difference at 
p<0.0005 between the baseline and both the systems. How-
ever, it shows no statistically significant difference between 
the performances of the pronunciation learning and list 
Soundex systems themselves. 
 The graphs for the three systems show an intuitive trend. 
We find that as we increase the number of outputs that each 
system generates from 5 to 25, the precision of each system 
goes down slowly while the recall goes up. 

5.3 Discussion 

It is clear from the results above that the pronunciation 
based methods for generating name variants reap good re-
sults. Further it is clear that by using these methods, signifi-
cant improvement over the baseline can be achieved. 
 What is also encouraging is the relative recall compared 
to humans. We find that for the 30 test names, a human was 
able to generate on an average four variant spellings. How-
ever both the pronunciation generation and list soundex 
methods generated 25 variants with a precision of 0.68, i.e., 
about 17 correct variants, which is four times what a human 
could generate.  This of course goes in line with the general 
observation that humans are good at telling a good thing 
from a bad but are not so good at generating a set of possi-
ble good things. 
 What is also interesting is that the precision, recall, and F-
scores of the pronunciation generation and list Soundex 
methods are significantly better than the baseline at all the 
output sizes. This came as a bit of a surprise initially, be-
cause we expected the baseline to perform well at least 
when the number of outputs is small, given that the baseline 

system uses a large meticulously prepared list of names (US 
census list). We however feel now that the very fact that the 
US census list was meticulously prepared went against the 
baseline given the nature of the task, where it is as important 
to have misspellings as to have correct spellings. 

6. Conclusion 

The results here clearly show the success of using the pho-
netic models for the purpose of generating spelling variants. 
We attribute this success to the fact that spelling variants 
more often than not have to do with the ambiguous mapping 
between pronunciations and their corresponding rendering 
into letter sequences (spellings). Our models derive their 
power from the very fact that different people on one hand 
tend to pronounce the same letter sequences differently and 
on the other tend to write different spellings for the same 
pronunciation. 
 One other striking observation is the four-fold increase in 
the number of good name variations compared to the vari-
ants generated by a human. This clearly reinforces the need 
of a variant generator for the name query expansion task. 
 Another interesting conclusion is the clear superiority of 
the automatic acquisition of large name lists compared to 
the slow manual preparation for the purpose of generating 
variants even in the low recall ranges (top 5 outputs), as is 
demonstrated by the high performance of the list Soundex 
method compared to the baseline. 
 In the future, we would like to build a hybrid system that 
can combine the outputs of both the algorithms and rank the 
combined output in a meaningful way. We would also like 
to test our algorithms with non-English names. Our initial 
experiments with non-English names look very promising 
though we presently do not have a baseline to compare 
against for these names. We would further like to apply our 
algorithms to other entities, such as technical terms, that are 
likely to be misspelled for the same reason as person names. 
Also, in the future we plan to modify the algorithms to tailor 
the variants for the kind of mistakes that are more likely to 
occur while spelling names from different languages and by 
native speakers of different languages owing to the different 
sounds present in those languages. 
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