# -*- org-image-actual-width: 500; -*- #+TITLE: PDF Parsing #+PROPERTY: header-args :session *Python* #+STARTUP: inlineimages #+OPTIONS: ^:nil #+BEGIN_COMMENT Some notes about the header for those not familiar with Org Mode: The property `header-args` with ~:session \*Python\*~ will cause all evaluated source code blocks to be evaluated in the buffer named "\*Python\*", which is the default buffer name for the buffer connected to an inferior python process. This is useful for interactive development. It gives you a REPL to work with rather than having to constantly evaluate source code blocks and view the results output to try any change. Another note along those lines is that when source code blocks are evaluated, some unnecessary output is printed in the ~*Python*~ buffer. Adding ~:results output~ to a code block will minimize that noise. #+END_COMMENT * Overview ** To get CSV data from a table in a scanned pdf document: #+BEGIN_SRC shell :results none :session *Shell* TABLES=("/tmp/example-1/example-1.pdf" "/tmp/example-2/example-2.pdf") python -m table_ocr.prepare_pdfs $TABLES | grep .png > /tmp/pdf-images.txt cat /tmp/pdf-images.txt | xargs -I{} python -m table_ocr.extract_tables {} | grep table > /tmp/extracted-tables.txt cat /tmp/extracted-tables.txt | xargs -I{} python -m table_ocr.extract_cells_from_table {} | grep cells > /tmp/extracted-cells.txt cat /tmp/extracted-cells.txt | xargs -I{} python -m table_ocr.ocr_image {} # This next one needs to be run on each subdirectory one at a time. python -m table_ocr.ocr_to_csv $(find . -iregex ".*cells.*ocr_data.*\.txt" 2>/dev/null) #+END_SRC Or, as a shell script. #+BEGIN_SRC shell :results none :tangle ocr_tables :tangle-mode (identity #o755) #!/bin/sh PDF=$1 python -m table_ocr.prepare_pdfs $PDF | grep .png > /tmp/pdf-images.txt cat /tmp/pdf-images.txt | xargs -I{} python -m table_ocr.extract_tables {} | grep table > /tmp/extracted-tables.txt cat /tmp/extracted-tables.txt | xargs -I{} python -m table_ocr.extract_cells_from_table {} | grep cells > /tmp/extracted-cells.txt cat /tmp/extracted-cells.txt | xargs -I{} python -m table_ocr.ocr_image {} --psm 7 -l data-table for image in $(cat /tmp/extracted-tables.txt); do dir=$(dirname $image) python -m table_ocr.ocr_to_csv $(find $dir/cells -name "*.txt") done #+END_SRC ** Possible improvements Detect text with the stroke-width-transform alogoritm. https://zablo.net/blog/post/stroke-width-transform-swt-python/index.html * Preparing data ** Converting PDFs to images Not all pdfs need to be sent through OCR to extract the text content. If you can click and drag to highlight text in the pdf, then the tools in this library probably aren't necessary. This code calls out to [[https://manpages.debian.org/testing/poppler-utils/pdfimages.1.en.html][pdfimages]] from [[https://poppler.freedesktop.org/][Poppler]]. #+NAME: pdf-to-images-overview #+HEADER: :mkdirp yes :tangle table_ocr/pdf_to_images/__init__.py #+BEGIN_SRC python :noweb strip-export :results none import os import re import subprocess from table_ocr.util import get_logger, working_dir logger = get_logger(__name__) # Wrapper around the Poppler command line utility "pdfimages" and helpers for # finding the output files of that command. <> # Helpers to detect orientation of the images that Poppler extracted and if the # images are rotated or skewed, use ImageMagick's `mogrify` to correct the # rotation. (Makes OCR more straightforward.) <> #+END_SRC #+NAME: pdf-to-images #+BEGIN_SRC python :results none def pdf_to_images(pdf_filepath): """ Turn a pdf into images """ directory, filename = os.path.split(pdf_filepath) with working_dir(directory): image_filenames = pdfimages(pdf_filepath) # Since pdfimages creates a number of files named each for there page number # and doesn't return us the list that it created return [os.path.join(directory, f) for f in image_filenames] def pdfimages(pdf_filepath): """ Uses the `pdfimages` utility from Poppler (https://poppler.freedesktop.org/). Creates images out of each page. Images are prefixed by their name sans extension and suffixed by their page number. This should work up to pdfs with 999 pages since find matching files in dir uses 3 digits in its regex. """ directory, filename = os.path.split(pdf_filepath) filename_sans_ext = filename.split(".pdf")[0] subprocess.run(["pdfimages", "-png", pdf_filepath, filename.split(".pdf")[0]]) image_filenames = find_matching_files_in_dir(filename_sans_ext, directory) logger.debug( "Converted {} into files:\n{}".format(pdf_filepath, "\n".join(image_filenames)) ) return image_filenames def find_matching_files_in_dir(file_prefix, directory): files = [ filename for filename in os.listdir(directory) if re.match(r"{}-\d{{3}}.*\.png".format(re.escape(file_prefix)), filename) ] return files #+END_SRC ** Detecting image orientation and applying rotation. Tesseract can detect orientation and we can then use [[https://www.imagemagick.org/script/mogrify.php][ImageMagick's mogrify]] to rotate the image. Here's an example of the output we get from orientation detection with Tesseract. #+BEGIN_EXAMPLE ➜ example/ tesseract --psm 0 example-000.png - Page number: 0 Orientation in degrees: 90 Rotate: 270 Orientation confidence: 26.86 Script: Latin Script confidence: 2.44 #+END_EXAMPLE #+NAME: fix-orientation #+BEGIN_SRC python :results none def preprocess_img(filepath): """ Processing that involves running shell executables, like mogrify to rotate. """ rotate = get_rotate(filepath) logger.debug("Rotating {} by {}.".format(filepath, rotate)) mogrify(filepath, rotate) def get_rotate(image_filepath): output = ( subprocess.check_output(["tesseract", "--psm", "0", image_filepath, "-"]) .decode("utf-8") .split("\n") ) output = next(l for l in output if "Rotate: " in l) output = output.split(": ")[1] return output def mogrify(image_filepath, rotate): subprocess.run(["mogrify", "-rotate", rotate, image_filepath]) #+END_SRC * Detecting tables This answer from opencv.org was heavily referenced while writing the code around table detection: https://answers.opencv.org/question/63847/how-to-extract-tables-from-an-image/. It's much easier to OCR a table when the table is the only thing in the image. This code detects tables in an image and returns a list of images of just the tables, no surrounding text or noise. The blurring, thresholding, and line detection is used here as well as later on for cell extraction. They are good techniques for cleaning an image up in a way that makes things like shape detection more accurate. #+BEGIN_SRC python :noweb-ref detect-table :results none :noweb no-export def find_tables(image): <> <> <> contours, heirarchy = cv2.findContours( mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE, ) MIN_TABLE_AREA = 1e5 contours = [c for c in contours if cv2.contourArea(c) > MIN_TABLE_AREA] perimeter_lengths = [cv2.arcLength(c, True) for c in contours] epsilons = [0.1 * p for p in perimeter_lengths] approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)] bounding_rects = [cv2.boundingRect(a) for a in approx_polys] # The link where a lot of this code was borrowed from recommends an # additional step to check the number of "joints" inside this bounding rectangle. # A table should have a lot of intersections. We might have a rectangular image # here though which would only have 4 intersections, 1 at each corner. # Leaving that step as a future TODO if it is ever necessary. images = [image[y:y+h, x:x+w] for x, y, w, h in bounding_rects] return images #+END_SRC #+HEADER: :post html-image-size(text=*this*, width="500px") #+BEGIN_SRC python :noweb-ref test-detect-table :noweb no-export :results raw import cv2 <> image_filename = "resources/examples/example-page.png" image = cv2.imread(image_filename, cv2.IMREAD_GRAYSCALE) image = find_tables(image)[0] cv2.imwrite("resources/examples/example-table.png", image) "resources/examples/example-table.png" #+END_SRC #+RESULTS: #+ATTR_HTML: :width 500px :height 100% [[file:resources/examples/example-table.png]] ** Improving accuracy It's likely that some images will contain tables that aren't accurately recognized by the code above. The code will then need to be made more robust. But how will we know that changes to the code don't break the detection of tables that were previously detected? It might be good to add some type of test suite in the future that contains a spec that matches a pdf with the pages and pixel coordinates of the detected tables. The coordinates would need to have a range. Something like "example-1.pdf, page-2.png, [450:470, 200:210, 800:820, 1270:1290]" where the elements of the list are valid x, y, w, h ranges. So the test will pass if if the x, y, width and height are anywhere in that range. * OCR tables Find the bounding box of each cell in the table. Run tesseract on each cell. Print a comma seperated output. We'll start with an image shown at the end of the previous section. ** Blur Blurring helps to make noise less noisy so that the overall structure of an image is more detectable. That gray row at the bottom is kind of noisy. If we don't somehow clean it up, OpenCV will detect all sorts of odd shapes in there and it will throw off our cell detection. Cleanup can be accomplished with a blur followed by some thresholding. #+BEGIN_SRC python :noweb-ref blur :results none BLUR_KERNEL_SIZE = (17, 17) STD_DEV_X_DIRECTION = 0 STD_DEV_Y_DIRECTION = 0 blurred = cv2.GaussianBlur(image, BLUR_KERNEL_SIZE, STD_DEV_X_DIRECTION, STD_DEV_Y_DIRECTION) #+END_SRC #+HEADER: :post html-image-size(text=*this*, width="500px") #+BEGIN_SRC python :noweb no-export :results raw :exports both image = ~cv2.imread("resources/examples/example-table.png", cv2.IMREAD_GRAYSCALE) <> cv2.imwrite("resources/examples/example-table-blurred.png", blurred) "resources/examples/example-table-blurred.png" #+END_SRC #+RESULTS: #+ATTR_HTML: :width 500px :height 100% [[file:resources/examples/example-table-blurred.png]] ** Threshold We've got a bunch of pixels that are gray. Thresholding will turn them all either black or white. Having all black or white pixels lets us do morphological transformations like erosion and dilation. #+BEGIN_SRC python :noweb-ref threshold :results none MAX_COLOR_VAL = 255 BLOCK_SIZE = 15 SUBTRACT_FROM_MEAN = -2 img_bin = cv2.adaptiveThreshold( ~blurred, MAX_COLOR_VAL, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, BLOCK_SIZE, SUBTRACT_FROM_MEAN, ) #+END_SRC #+HEADER: :post html-image-size(text=*this*, width="500px") #+BEGIN_SRC python :noweb no-export :results raw :exports both <> cv2.imwrite("resources/examples/example-table-thresholded.png", img_bin) "resources/examples/example-table-thresholded.png" #+END_SRC #+RESULTS: #+ATTR_HTML: :width 500px :height 100% [[file:resources/examples/example-table-thresholded.png]] ** Finding the vertical and horizontal lines of the table Note: There's a wierd issue with the results of the example below when it's evaluated as part of an export or a full-buffer evaluation. If you evaluate the example by itself, it looks the way it's intended. If you evaluate it as part of an entire buffer evaluation, it's distorted. #+BEGIN_SRC python :noweb-ref lines-of-table :results none vertical = horizontal = img_bin.copy() SCALE = 5 image_width, image_height = horizontal.shape horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(image_width / SCALE), 1)) horizontally_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel) vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(image_height / SCALE))) vertically_opened = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel) horizontally_dilated = cv2.dilate(horizontally_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (40, 1))) vertically_dilated = cv2.dilate(vertically_opened, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 60))) mask = horizontally_dilated + vertically_dilated #+END_SRC #+HEADER: :post html-image-size(text=*this*, width="500px") #+BEGIN_SRC python :noweb no-export :results raw :exports both <> cv2.imwrite("resources/examples/example-table-lines.png", mask) "resources/examples/example-table-lines.png" #+END_SRC #+RESULTS: #+ATTR_HTML: :width 500px :height 100% [[file:resources/examples/example-table-lines.png]] ** Finding the contours Blurring and thresholding allow us to find the lines. Opening the lines allows us to find the contours. An "Opening" is an erosion followed by a dilation. Great examples and descriptions of each morphological operation can be found at [[https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html][https://docs.opencv.org/trunk/d9/d61/tutorial_py_morphological_ops.html]]. #+BEGIN_QUOTE Contours can be explained simply as a curve joining all the continuous points (along the boundary), having same color or intensity. The contours are a useful tool for shape analysis and object detection and recognition. #+END_QUOTE We can search those contours to find rectangles of certain size. To do that, we can use OpenCV's ~approxPolyEP~ function. It takes as arguments the contour (list of contiguous points), and a number representing how different the polygon perimeter length can be from the true perimeter length of the contour. ~0.1~ (10%) seems to be a good value. The difference in perimeter length between a 4-sided polygon and a 3-sided polygon is greater than 10% and the difference between a 5+ sided polygon and a 4-sided polygon is less than 10%. So a 4-sided polygon is the polygon with the fewest sides that leaves the difference in perimeter length within our 10% threshold. Then we just get the bounding rectangle of that polygon and we have our cells! We might need to do a little more filtering of those rectangles though. We might have accidentally found some noise such as another image on the page or a title header bar or something. If we know our cells are all within a certain size (by area of pixels) then we can filter out the junk cells by removing cells above/below certain sizes. #+BEGIN_SRC python :noweb-ref bounding-rects :results none contours, heirarchy = cv2.findContours( mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE, ) perimeter_lengths = [cv2.arcLength(c, True) for c in contours] epsilons = [0.05 * p for p in perimeter_lengths] approx_polys = [cv2.approxPolyDP(c, e, True) for c, e in zip(contours, epsilons)] # Filter out contours that aren't rectangular. Those that aren't rectangular # are probably noise. approx_rects = [p for p in approx_polys if len(p) == 4] bounding_rects = [cv2.boundingRect(a) for a in approx_polys] # Filter out rectangles that are too narrow or too short. MIN_RECT_WIDTH = 40 MIN_RECT_HEIGHT = 10 bounding_rects = [ r for r in bounding_rects if MIN_RECT_WIDTH < r[2] and MIN_RECT_HEIGHT < r[3] ] # The largest bounding rectangle is assumed to be the entire table. # Remove it from the list. We don't want to accidentally try to OCR # the entire table. largest_rect = max(bounding_rects, key=lambda r: r[2] * r[3]) bounding_rects = [b for b in bounding_rects if b is not largest_rect] cells = [c for c in bounding_rects] #+END_SRC ** Sorting the bounding rectangles We want to process these from left-to-right, top-to-bottom. I've thought of a straightforward algorithm for it, but it could probably be made more efficient. We'll find the most rectangle with the most top-left corner. Then we'll find all of the rectangles that have a center that is within the top-y and bottom-y values of that top-left rectangle. Then we'll sort those rectangles by the x value of their center. We'll remove those rectangles from the list and repeat. #+BEGIN_SRC python :noweb-ref sort-contours :results none def cell_in_same_row(c1, c2): c1_center = c1[1] + c1[3] - c1[3] / 2 c2_bottom = c2[1] + c2[3] c2_top = c2[1] return c2_top < c1_center < c2_bottom orig_cells = [c for c in cells] rows = [] while cells: first = cells[0] rest = cells[1:] cells_in_same_row = sorted( [ c for c in rest if cell_in_same_row(c, first) ], key=lambda c: c[0] ) row_cells = sorted([first] + cells_in_same_row, key=lambda c: c[0]) rows.append(row_cells) cells = [ c for c in rest if not cell_in_same_row(c, first) ] # Sort rows by average height of their center. def avg_height_of_center(row): centers = [y + h - h / 2 for x, y, w, h in row] return sum(centers) / len(centers) rows.sort(key=avg_height_of_center) #+END_SRC To test if this code works, let's try sorting the bounding rectangles and numbering them from right to left, top to bottom. #+HEADER: :post html-image-size(text=*this*, width="500px") #+BEGIN_SRC python :noweb no-export :results raw :exports both import cv2 image = cv2.imread("resources/examples/example-table.png", cv2.IMREAD_GRAYSCALE) <> <> <> <> <> FONT_SCALE = 0.7 FONT_COLOR = (127, 127, 127) for i, row in enumerate(rows): for j, cell in enumerate(row): x, y, w, h = cell cv2.putText( image, "{},{}".format(i, j), (int(x + w - w / 2), int(y + h - h / 2)), cv2.FONT_HERSHEY_SIMPLEX, FONT_SCALE, FONT_COLOR, 2, ) cv2.imwrite("resources/examples/example-table-cells-numbered.png", image) "resources/examples/example-table-cells-numbered.png" #+END_SRC #+RESULTS: #+ATTR_HTML: :width 500px :height 100% [[file:resources/examples/example-table-cells-numbered.png]] #+BEGIN_SRC python :noweb-ref extract-cells-from-table :noweb yes :eval no def extract_cell_images_from_table(image): <> <> <> <> <> cell_images_rows = [] for row in rows: cell_images_row = [] for x, y, w, h in row: cell_images_row.append(image[y:y+h, x:x+w]) cell_images_rows.append(cell_images_row) return cell_images_rows #+END_SRC #+HEADER: :post html-image-size(text=*this*, width="200px") #+BEGIN_SRC python :noweb no-export :results raw :exports both <> image = cv2.imread("resources/examples/example-table.png", cv2.IMREAD_GRAYSCALE) cell_images_rows = extract_cell_images_from_table(image) cv2.imwrite("resources/examples/example-table-cell-1-1.png", cell_images_rows[1][1]) "resources/examples/example-table-cell-1-1.png" #+END_SRC #+RESULTS: #+ATTR_HTML: :width 200px :height 100% [[file:resources/examples/example-table-cell-1-1.png]] ** Cropping each cell to the text OCR with Tesseract works best when there is about 10 pixels of white border around the text. Our bounding rectangles may have picked up some stray pixels from the horizontal and vertical lines of the cells in the table. It's probobly just a few pixels, much fewer than the width of the text. If that's the case, then we can remove that noise with a simple open morph. Once the stray border pixels have been removed, we can expand our border using ~copyMakeBorder~. #+BEGIN_SRC python :eval no :noweb-ref crop-to-text def crop_to_text(image): MAX_COLOR_VAL = 255 BLOCK_SIZE = 15 SUBTRACT_FROM_MEAN = -2 img_bin = cv2.adaptiveThreshold( ~image, MAX_COLOR_VAL, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, BLOCK_SIZE, SUBTRACT_FROM_MEAN, ) img_h, img_w = image.shape horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (int(img_w * 0.5), 1)) vertical_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, int(img_h * 0.7))) horizontal_lines = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, horizontal_kernel) vertical_lines = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, vertical_kernel) both = horizontal_lines + vertical_lines cleaned = img_bin - both # Get rid of little noise. kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) opened = cv2.morphologyEx(cleaned, cv2.MORPH_OPEN, kernel) contours, hierarchy = cv2.findContours(opened, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) bounding_rects = [cv2.boundingRect(c) for c in contours] NUM_PX_COMMA = 6 MIN_CHAR_AREA = 5 * 9 if bounding_rects: minx, miny, maxx, maxy = math.inf, math.inf, 0, 0 for x, y, w, h in [(x, y, w, h) for x, y, w, h in bounding_rects if w * h > MIN_CHAR_AREA]: minx = min(minx, x) miny = min(miny, y) maxx = max(maxx, x + w) maxy = max(maxy, y + h) x, y, w, h = minx, miny, maxx - minx, maxy - miny cropped = image[y:min(img_h, y+h+NUM_PX_COMMA), x:min(img_w, x+w)] else: # If we morphed out all of the text, fallback to using the unmorphed image. cropped = image bordered = cv2.copyMakeBorder(cropped, 5, 5, 5, 5, cv2.BORDER_CONSTANT, None, 255) return bordered #+END_SRC #+HEADER: :post html-image-size(text=*this*, width="200px") #+BEGIN_SRC python :noweb no-export :results raw :exports both import cv2 <> image = cv2.imread("resources/examples/example-table-cell-1-1.png", cv2.IMREAD_GRAYSCALE) image = crop_to_text(image) cv2.imwrite("resources/examples/example-table-cell-1-1-cropped.png", image) "resources/examples/example-table-cell-1-1-cropped.png" #+END_SRC #+RESULTS: #+ATTR_HTML: :width 200px :height 100% [[file:resources/examples/example-table-cell-1-1-cropped.png]] ** OCR each cell If we cleaned up the images well enough, we might get some accurate OCR! There is plenty that could have gone wrong along the way. The first step to troubleshooting is to view the intermediate images and see if there's something about your image that is obviously abnormal, like some really thick noise or a wrongly detected table. If everything looks reasonable but the OCR is doing something like turning a period into a comma, then you might need to do some custom Tesseract training. #+BEGIN_SRC python :noweb-ref ocr-image :eval no def ocr_image(image, config): return pytesseract.image_to_string( image, config=config ) #+END_SRC #+BEGIN_SRC python :noweb no-export :exports both import pytesseract import cv2 image = cv2.imread("resources/examples/example-table-cell-1-1.png", cv2.IMREAD_GRAYSCALE) <> <> image = crop_to_text(image) ocr_image(image, "--psm 7") #+END_SRC #+RESULTS: : 9.09 * Files :PROPERTIES: :header-args: :mkdirp yes :noweb yes :END: #+BEGIN_SRC python :tangle table_ocr/__init__.py :mkdirp yes :results none #+END_SRC ** setup.py #+BEGIN_SRC python :tangle setup.py :results none import setuptools long_description = """ Utilities for turning images of tables into CSV data. Uses Tesseract and OpenCV. Requires binaries for tesseract and pdfimages (from Poppler). """ setuptools.setup( name="table_ocr", version="0.0.1", author="Eric Ihli", author_email="eihli@owoga.com", description="Turn images of tables into CSV data.", long_description=long_description, long_description_content_type="text/plain", url="https://github.com/eihli/image-table-ocr", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=[ "pytesseract~=0.3", "opencv-python~=4.2", ], python_requires='>=3.6', ) #+END_SRC ** table_ocr *** table_ocr/__init__.py #+BEGIN_SRC python :tangle table_ocr/__init__.py :mkdirp yes :results none #+END_SRC *** table_ocr/util.py #+BEGIN_SRC python :tangle table_ocr/util.py :mkdirp yes :results none from contextlib import contextmanager import functools import logging import os import tempfile <> @contextmanager def working_dir(directory): original_working_dir = os.getcwd() try: os.chdir(directory) yield directory finally: os.chdir(original_working_dir) def make_tempdir(identifier): return tempfile.mkdtemp(prefix="{}_".format(identifier)) #+END_SRC *** table_ocr/pdf_to_images/__main__.py Takes a variable number of pdf files and creates images out of each page of the file using ~pdfimages~ from Poppler. Images are created in the same directory that contains the pdf. Prints each pdf followed by the images extracted from that pdf followed by a blank line. #+BEGIN_SRC shell :eval no :exports code python -m table_ocr.prepare_pdfs /tmp/file1/file1.pdf /tmp/file2/file2.pdf ... #+END_SRC #+NAME: pdf_to_images/__main__.py #+HEADER: :tangle table_ocr/pdf_to_images/__main__.py #+BEGIN_SRC python import argparse from table_ocr.util import working_dir, make_tempdir, get_logger from table_ocr.pdf_to_images import pdf_to_images, preprocess_img logger = get_logger(__name__) parser = argparse.ArgumentParser() parser.add_argument("files", nargs="+") def main(files): pdf_images = [] for f in files: pdf_images.append((f, pdf_to_images(f))) for pdf, images in pdf_images: for image in images: preprocess_img(image) for pdf, images in pdf_images: print("{}\n{}\n".format(pdf, "\n".join(images))) if __name__ == "__main__": args = parser.parse_args() main(args.files) #+END_SRC *** table_ocr/extract_tables.py #+BEGIN_SRC shell . ~/.virtualenvs/lotto_odds/bin/activate python -m pdf.extract_tables "resources/examples/example-page.png" #+END_SRC #+RESULTS: | resources/examples/example-page.png | | resources/examples/example-page-table-000.png | #+BEGIN_SRC python :noweb yes :tangle table_ocr/extract_tables.py :results none import argparse import os import cv2 parser = argparse.ArgumentParser() parser.add_argument("files", nargs="+") def main(files): results = [] for f in files: directory, filename = os.path.split(f) image = cv2.imread(f, cv2.IMREAD_GRAYSCALE) tables = find_tables(image) files = [] filename_sans_extension = os.path.splitext(filename)[0] if tables: os.makedirs(os.path.join(directory, filename_sans_extension), exist_ok=True) for i, table in enumerate(tables): table_filename = "table-{:03d}.png".format(i) table_filepath = os.path.join(directory, filename_sans_extension, table_filename) files.append(table_filepath) cv2.imwrite(table_filepath, table) if tables: results.append((f, files)) for image_filename, table_filenames in results: print("\n".join(table_filenames)) <> if __name__ == "__main__": args = parser.parse_args() files = args.files main(files) #+END_SRC *** table_ocr/extract_cells_from_table.py #+BEGIN_SRC shell :results none . ~/.virtualenvs/lotto_odds/bin/activate python -m pdf.extract_cells_from_table "resources/examples/example-table.png" #+END_SRC #+BEGIN_SRC python :noweb yes :tangle table_ocr/extract_cells_from_table.py :results none import os import sys import cv2 import pytesseract def main(f): results = [] directory, filename = os.path.split(f) table = cv2.imread(f, cv2.IMREAD_GRAYSCALE) rows = extract_cell_images_from_table(table) cell_img_dir = os.path.join(directory, "cells") os.makedirs(cell_img_dir, exist_ok=True) for i, row in enumerate(rows): for j, cell in enumerate(row): cell_filename = "{:03d}-{:03d}.png".format(i, j) path = os.path.join(cell_img_dir, cell_filename) cv2.imwrite(path, cell) print(path) <> if __name__ == "__main__": main(sys.argv[1]) #+END_SRC *** table_ocr/ocr_image.py This does a little bit of cleanup before sending it through tesseract. Creates images and text files that can be used for training tesseract. See https://github.com/tesseract-ocr/tesstrain. #+BEGIN_SRC shell :results output . ~/.virtualenvs/lotto_odds/bin/activate python -m table_ocr.ocr_cell resources/examples/cells/000-000.png #+END_SRC #+RESULTS: : PRIZE #+BEGIN_SRC python :tangle table_ocr/ocr_image.py :mkdirp yes :results none import argparse import math import os import sys import cv2 import pytesseract description="""Takes a single argument that is the image to OCR. Remaining arguments are passed directly to Tesseract. Attempts to make OCR more accurate by performing some modifications on the image. Saves the modified image and the OCR text in an `ocr_data` directory. Filenames are of the format for training with tesstrain.""" parser = argparse.ArgumentParser(description=description) parser.add_argument("image", help="filepath of image to perform OCR") <> <> def main(image_file, tess_args): directory, filename = os.path.split(image_file) filename_sans_ext, ext = os.path.splitext(filename) image = cv2.imread(image_file, cv2.IMREAD_GRAYSCALE) cropped = crop_to_text(image) ocr_data_dir = os.path.join(directory, "ocr_data") os.makedirs(ocr_data_dir, exist_ok=True) out_imagepath = os.path.join(ocr_data_dir, filename) out_txtpath = os.path.join(ocr_data_dir, "{}.gt.txt".format(filename_sans_ext)) cv2.imwrite(out_imagepath, cropped) txt = ocr_image(cropped, " ".join(tess_args)) print(txt) with open(out_txtpath, "w") as txt_file: txt_file.write(txt) if __name__ == "__main__": args, tess_args = parser.parse_known_args() main(args.image, tess_args) #+END_SRC *** table_ocr/ocr_to_csv.py #+BEGIN_SRC python :tangle table_ocr/ocr_to_csv.py import argparse import csv import io import os import sys import tempfile parser = argparse.ArgumentParser() parser.add_argument("files", nargs="+") def main(files): """Files must be sorted lexicographically Filenames must be -.txt. 000-000.txt 000-001.txt 001-000.txt etc... """ rows = [] for f in files: directory, filename = os.path.split(f) with open(f) as of: txt = of.read() row, column = map(int, filename.split(".")[0].split("-")) if row == len(rows): rows.append([]) rows[row].append(txt) csv_file = io.StringIO() writer = csv.writer(csv_file) writer.writerows(rows) print(csv_file.getvalue()) if __name__ == "__main__": args = parser.parse_args() files = args.files files.sort() main(files) #+END_SRC * Utils The following code lets us specify a size for images when they are exported to html. Org supports specifying an export size for an image by putting the ~#+ATTR_HTML: :width 100px~ before the image. But since our images are in a results drawer, we need a way for our results drawer to do that for us automatically. Adding ~#+ATTR_HTML~ after the beginning of the result block introduces a new problem. Org-babel no longer recognizes the result as a result block and doesn't remove it when a src block is re-evaluated, so we end up just appending new results on each evaluation. There is nothing configurable that will tell org-babel to remove our line. But we can define a function to do some cleanup and then add it as a before hook with ~advice-add~. #+NAME: html-image-size #+BEGIN_SRC emacs-lisp :var text="" :var width="100%" :var height="100%" :results raw :export code (concat "#+ATTR_HTML: :width " width " :height " height "\n[[file:" text "]]") #+END_SRC #+BEGIN_SRC emacs-lisp :results none (defun remove-attributes-from-src-block-result (&rest args) (let ((location (org-babel-where-is-src-block-result)) (attr-regexp "[ ]*#\\+ATTR.*$")) (when location (save-excursion (goto-char location) (when (looking-at (concat org-babel-result-regexp ".*$")) (next-line) (while (looking-at attr-regexp) (kill-whole-line))))))) (advice-add 'org-babel-remove-result :before #'remove-attributes-from-src-block-result) (advice-add 'org-babel-execute-src-block :before #'remove-attributes-from-src-block-result) #+END_SRC ** Logging #+BEGIN_SRC python :eval query :noweb-ref get-logger def get_logger(name): logger = logging.getLogger(name) lvl = os.environ.get("PY_LOG_LVL", "info").upper() handler = logging.StreamHandler() formatter = logging.Formatter(logging.BASIC_FORMAT) handler.setFormatter(formatter) logger.addHandler(handler) handler.setLevel(lvl) logger.setLevel(lvl) return logger #+END_SRC